
	

	

0	

	

PyjAmaseis	

An	
 Application	
 for	
 Educational	
 Seismology	

Name:	
 Saketh	
 Vishnubhotla	

UPI:	
 svis267	

ID:	
 2655131	

	
 	
 	
 31st	
 October	
 2014	

	

	
 	

BTech	
 451	
 Final	
 Report	

	
 	
 	
 	
 	
 1	

Acknowledgements	
 	

	

I	
 would	
 like	
 to	
 take	
 this	
 opportunity	
 to	
 express	
 my	
 deepest	
 gratitude	
 to	
 my	

Industry	
 Supervisor	
 Dr.	
 Kasper	
 van	
 Wijk	
 for	
 supporting	
 me	
 and	
 giving	
 me	

constant	
 encouragement	
 throughout	
 the	
 course	
 of	
 this	
 project.	
 	

	

I	
 also	
 take	
 this	
 opportunity	
 to	
 express	
 my	
 sincere	
 gratitude	
 to	
 my	
 Academic	

Supervisor	
 Dr.	
 Patrice	
 Delmas,	
 who	
 provided	
 me	
 with	
 valuable	
 advice	
 on	

presentations	
 and	
 report	
 writing	
 throughout	
 the	
 year.	

	

Lastly,	
 I	
 thank	
 Matiu	
 Carr	
 from	
 Science	
 IT	
 for	
 offering	
 his	
 time	
 to	
 work	
 with	
 me	

to	
 setup	
 the	
 remote	
 functionality	
 for	
 this	
 project.	

	
 	

	
 	
 	
 	
 	
 2	

Table	
 of	
 Contents	

Acknowledgements	
 ...	
 1	

Abstract	
 ...	
 3	

1.	
 Introduction	
 ..	
 4	

2.	
 Related	
 Work	
 ..	
 5	

2.1	
 Paradigm	
 Seismic	
 Processing	
 and	
 Imaging	
 Solution	
 ...	
 5	

2.2	
 The	
 Omega	
 Seismic	
 Processing	
 System	
 ..	
 6	

2.3	
 jAmaseis	
 ..	
 7	

2.4	
 Amaseis	
 ...	
 8	

3.	
 Design	
 ..	
 9	

3.1	
 Project	
 Requirements	
 ..	
 9	

3.2	
 Software	
 Architecture	
 ...	
 10	

4.	
 Implementation	
 ..	
 11	

4.1	
 Collecting	
 ...	
 11	

4.1.1	
 Sampling	
 Data	
 ..	
 11	

4.1.2	
 Continuous	
 Collection	
 ..	
 13	

4.2	
 Plotting	
 ...	
 13	

4.2.1	
 Static	
 Plotting	
 ...	
 13	

4.2.2	
 Version	
 Control	
 Problem	
 ..	
 14	

4.2.3	
 Dynamic	
 Plotting	
 ..	
 14	

4.2.4	
 Calibrating	
 the	
 axis	
 ..	
 16	

4.2.5	
 Plotting	
 Problems	
 ..	
 19	

4.3	
 Saving	
 ..	
 24	

4.4	
 Sharing	
 ...	
 25	

4.5	
 Additional	
 Features	
 ...	
 26	

4.5.1	
 TC1	
 Plug	
 &	
 Play	
 ...	
 26	

4.5.2	
 User	
 Interface	
 ..	
 28	

4.5.3	
 Real-­‐time	
 Geo-­‐location	
 Querying	
 ..	
 29	

4.5.4	
 Y	
 Plot	
 Shift	
 ...	
 29	

4.5.5	
 1	
 Hour	
 Plot	
 ..	
 30	

5.	
 Results	
 ..	
 31	

6.	
 Evaluation	
 ...	
 33	

7.	
 Conclusion	
 ..	
 33	

8.	
 Future	
 Work	
 ...	
 34	

9.	
 Bibliography	
 ..	
 36	

	

	
 	
 	
 	
 	
 3	

Abstract	

	

Seismology	
 is	
 a	
 topic	
 hardly	
 dealt	
 with	
 or	
 taught	
 in	
 schools.	
 This	
 is	
 due	
 to	
 several	

reasons	
 ranging	
 from	
 not	
 having	
 a	
 set	
 curriculum	
 to	
 not	
 having	
 the	
 tools	
 in	
 the	

classroom	
 to	
 demonstrate	
 and	
 simulate	
 earthquakes.	
 In	
 an	
 attempt	
 to	
 promote	

the	
 teaching	
 of	
 Seismology	
 in	
 schools	
 and	
 to	
 make	
 it	
 the	
 best	
 educational	

experience	
 for	
 the	
 students,	
 the	
 Incorporated	
 Research	
 Institutes	
 of	
 Seismology	

(IRIS)	
 and	
 The	
 University	
 of	
 Auckland’s	
 (UoA)	
 Physics	
 Department	
 (RU)	
 have	

invested	
 into	
 developing	
 an	
 education	
 program	
 called	
 Seismographs	
 in	
 Schools	

in	
 a	
 bid	
 to	
 provide	
 all	
 the	
 required	
 components	
 to	
 teach	
 Seismology	
 in	
 Schools.	

IRIS	
 has	
 created	
 a	
 curriculum	
 involving	
 classroom	
 activities,	
 quizzes,	
 and	

learning	
 content.	
 These	
 resources	
 are	
 freely	
 available	
 for	
 teachers	
 to	
 access,	

allowing	
 them	
 to	
 structure	
 it	
 into	
 a	
 subject.	
 However	
 there	
 is	
 more	
 to	
 what	
 is	

being	
 offered.	
 The	
 government	
 has	
 funded	
 thousands	
 of	
 schools	
 in	
 USA	
 to	

acquire	
 a	
 TC1	
 educational	
 seismometer	
 that	
 can	
 be	
 used	
 in	
 conjunction	
 with	
 the	

curriculum	
 provided	
 by	
 IRIS	
 to	
 make	
 it	
 a	
 highly	
 interactive	
 course	
 for	
 students.	

In	
 the	
 same	
 manner	
 The	
 UoA	
 Physics	
 Department	
 has	
 also	
 provided	
 many	

schools	
 around	
 NZ	
 with	
 computers	
 and	
 TC1	
 seismometers.	
 However	
 the	

software	
 that	
 is	
 currently	
 available	
 is	
 far	
 too	
 complicated	
 for	
 teachers	
 and	

students	
 to	
 use.	
 This	
 project	
 report	
 will	
 present	
 a	
 new	
 software	
 application	

developed	
 in	
 order	
 to	
 meet	
 the	
 needs	
 of	
 teachers	
 and	
 students	
 for	
 teaching	
 and	

learning	
 about	
 seismology.	
 This	
 application	
 features	
 all	
 the	
 required	
 core	

functionality	
 developed	
 within	
 a	
 simple	
 and	
 user-­‐friendly	
 user	
 interface.	
 The	

design,	
 implementation	
 of	
 the	
 application	
 along	
 with	
 evaluation	
 and	
 future	
 work	

are	
 discussed	
 in	
 this	
 report.	
 	

	

	

	

4	

1.	
 Introduction	

	

Seismology	
 is	
 the	
 study	
 of	
 earthquakes	
 and	
 seismic	
 waves	
 that	
 move	
 through	
 an	

around	
 the	
 Earth.	
 With	
 the	
 help	
 of	
 seismometers	
 seismologists	
 study	
 the	
 internal	

structure	
 of	
 the	
 Earth.	
 Although	
 seismology	
 is	
 a	
 very	
 important	
 modern	
 day	

topic,	
 schools	
 have	
 been	
 unable	
 to	
 create	
 a	
 structured	
 curriculum	
 to	
 teach	

seismology	
 as	
 a	
 subject	
 because	
 there	
 are	
 several	
 components	
 required	
 such	
 as	

the	
 necessary	
 hardware	
 and	
 software	
 to	
 demonstrate	
 what	
 is	
 taught	
 in	
 the	

curriculum.	
 Therefore	
 due	
 to	
 a	
 lack	
 of	
 one	
 or	
 all	
 the	
 mentioned	
 components	

(curriculum,	
 hardware	
 and	
 software)	
 many	
 schools	
 are	
 unable	
 to	
 teach	

Seismology.	
 To	
 address	
 this	
 issue	
 the	
 Incorporated	
 Research	
 Institutions	
 for	

Seismology	
 (IRIS)	
 have	
 invested	
 into	
 creating	
 a	
 curriculum	
 involving	
 classroom	

activities,	
 quizzes,	
 and	
 learning	
 content.	
 Along	
 with	
 this	
 they	
 have	
 provided	

thousands	
 of	
 schools	
 in	
 the	
 United	
 States	
 with	
 educational	
 seismometers	
 to	

enhance	
 the	
 learning	
 of	
 the	
 students.	
 The	
 University	
 of	
 Auckland’s	
 (UoA)	
 Physics	

Department	
 is	
 also	
 engaged	
 in	
 providing	
 computers	
 and	
 TC1	
 educational	

seismometers	
 to	
 schools	
 throughout	
 New	
 Zealand.	
 This	
 program	
 is	
 known	
 as	

Seismographs	
 in	
 Schools.	
 The	
 aim	
 is	
 to	
 provide	
 the	
 curriculum,	
 hardware	
 and	

software	
 to	
 schools	
 so	
 that	
 they	
 can	
 formulate	
 a	
 structured	
 course	
 out	
 of	
 it	
 and	

teach	
 seismology	
 as	
 a	
 subject.	

	

The	
 difficulty	
 that	
 both	
 IRIS	
 and	
 UoA	
 are	
 facing	
 is	
 that	
 although	
 the	
 curriculum	
 is	

well	
 developed	
 and	
 they	
 are	
 able	
 to	
 provide	
 schools	
 with	
 educational	

seismometers,	
 the	
 currently	
 available	
 software	
 that	
 the	
 teachers	
 and	
 students	

have	
 to	
 use	
 is	
 far	
 too	
 complicated	
 for	
 a	
 classroom	
 environment.	
 The	
 software	
 is	

quite	
 intricate	
 and	
 most	
 of	
 the	
 complex	
 features	
 of	
 the	
 software	
 are	
 not	
 used.	

There	
 is	
 a	
 limited	
 choice	
 when	
 it	
 comes	
 to	
 Seismology	
 data	
 processing	
 and	

sharing	
 suites	
 and	
 the	
 ones	
 currently	
 available	
 aren’t	
 very	
 suitable	
 for	
 teaching	

seismology.	
 Hence	
 the	
 aim	
 of	
 this	
 project	
 is	
 to	
 develop	
 an	
 application	
 that	

incorporates	
 the	
 core	
 functionality	
 present	
 in	
 the	
 existing	
 Seismology	
 data	

processing	
 and	
 sharing	
 suites	
 along	
 with	
 laying	
 heavy	
 emphasis	
 on	
 a	
 simple,	

intuitive	
 and	
 user-­‐friendly	
 design.	

	

The	
 goal	
 of	
 this	
 project	
 is	
 to	
 develop	
 a	
 robust	
 cross	
 platform	
 application	
 for	

educational	
 seismology	
 that	
 provides	
 the	
 core	
 features	
 such	
 as	
 plotting	
 live	
 data	

from	
 the	
 seismometer,	
 saving	
 seismic	
 data	
 and	
 sharing	
 this	
 data	
 with	
 other	

schools	
 online.	
 At	
 the	
 same	
 time,	
 whilst	
 keeping	
 the	
 end	
 users	
 in	
 mind,	
 I	
 will	
 be	

looking	
 into	
 developing	
 an	
 interface	
 that	
 is	
 suited	
 for	
 a	
 learning	
 environment.	

	

This	
 project	
 report	
 will	
 discuss	
 the	
 design	
 decisions,	
 implementation,	
 and	
 a	

results	
 section	
 that	
 highlights	
 the	
 significance	
 of	
 the	
 solutions	
 and	
 features	

developed	
 into	
 the	
 software.	
 	

	
 	
 	
 	
 	
 5	

2.	
 Related	
 Work	

	

There	
 are	
 a	
 number	
 of	
 libraries	
 and	
 modules	
 available	
 that	
 let	
 us	
 work	
 with	

seismic	
 data	
 but	
 not	
 too	
 many	
 applications.	
 Among	
 these	
 most	
 are	
 limited	
 to	
 one	

platform	
 and	
 are	
 all	
 highly	
 sophisticated.	
 A	
 few	
 of	
 the	
 currently	
 available	

Seismology	
 Data	
 processing	
 and	
 sharing	
 suites	
 are	
 presented	
 below.

2.1	
 Paradigm	
 Seismic	
 Processing	
 and	
 Imaging	
 Solution	

A	
 professional	
 seismic	
 data	
 processing	
 and	
 imaging	
 solutions	
 suite	
 is	
 offered	
 by	

Paradigm.	
 This	
 software	
 is	
 highly	
 professional	
 and	
 was	
 built	
 for	
 professional
seismologists.	
 The	
 Paradigm	
 seismic	
 processing	
 and	
 imaging	
 solutions	
 reduce	

uncertainty	
 and	
 improve	
 reliability	
 through	
 better	
 seismic	
 signal	
 quality,	

positioning,	
 and	
 content.	
 Their	
 proprietary	
 algorithms	
 translate	
 billions	
 of	
 bits	
 of	

seismic	
 data	
 into	
 highly	
 accurate,	
 high-­‐definition	
 images	
 of	
 the	
 subsurface,	

enabling	
 geoscientists	
 to	
 visualize	
 the	
 earth’s	
 formations.	

	

Although	
 Paradigm	
 seismic	
 processing	
 and	
 imaging	
 solutions	
 provide	
 high	

definition	
 imaging	
 tools	
 and	
 accurate	
 seismic	
 data	
 plotting,	
 it	
 is	
 not	
 suited	
 for	
 a	

classroom	
 scenario	
 for	
 teaching	
 Seismology	
 as	
 it	
 has	
 been	
 built	
 for	
 Professional	

Seismologists.	

	

	

Figure	
 1	
 Paradigm	
 software	
 showing	
 GeoDepth	
 velocity	
 determination,	
 modeling	
 and	
 imaging	

	

	
 	
 	
 	
 	
 6	

	

Figure	
 2	
 Paradigm	
 software	
 showing	
 seismic	
 velocity	
 model	
 with	
 salt	

2.2	
 The	
 Omega	
 Seismic	
 Processing	
 System	

The	
 Omega	
 Seismic	
 Processing	
 system	
 is	
 a	
 scalable	
 system	
 that	
 allows	
 for	

Seismic	
 processing	
 and	
 imaging	
 on	
 a	
 single	
 workstation	
 or	
 clusters	
 of	
 computers.	

The	
 Omega	
 provides	
 over	
 400+	
 geophysical	
 algorithms	
 for	
 data	
 manipulation.	

The	
 Omega	
 provides	
 geophysicists	
 support	
 for	
 Project	
 management	
 along	
 with	
 a	

workflow	
 building	
 application.	
 The	
 Omega	
 SeisView	
 geoscience	
 and	
 engineering	

software	
 is	
 a	
 2D	
 canvas	
 that	
 gives	
 geophysicists	
 the	
 tools	
 to	
 analyse	
 and	
 compare	

seismic	
 data.	
 The	
 SeisView	
 can	
 store,	
 display	
 and	
 plot	
 trace	
 attributes.	
 While	
 The	

Omega	
 SeisView	
 contains	
 advance	
 seismic	
 data	
 processing	
 features	
 and	

algorithms,	
 it	
 is	
 not	
 very	
 suitable	
 for	
 teaching	
 seismology	
 in	
 schools.	
 The	
 features	

are	
 quite	
 complicated	
 and	
 thus	
 will	
 be	
 a	
 challenge	
 for	
 teachers	
 and	
 students	
 to	

use.	

	

	

Figure	
 3	
 Omega	
 SeisView	
 2D	
 Canvas	

	
 	
 	
 	
 	
 7	

2.3	
 jAmaseis	

The	
 currently	
 used	
 software	
 in	
 the	
 Seismographs	
 for	
 schools	
 program	
 is	
 known	

as	
 jAmaseis.	
 jAmaSeis	
 facilitates	
 the	
 study	
 of	
 seismological	
 concepts	
 and	
 allows	

users	
 to	
 obtain	
 data	
 in	
 real-­‐time	
 from	
 either	
 a	
 local	
 instrument	
 or	
 from	
 remote	

stations.	
 As	
 a	
 result,	
 users	
 without	
 an	
 instrument	
 can	
 utilize	
 the	
 software.	
 Users	

can	
 view	
 a	
 graphical	
 representation	
 of	
 seismic	
 data	
 in	
 real	
 time	
 and	
 can	
 process	

the	
 data	
 to	
 determine	
 the	
 characteristics	
 of	
 seismograms	
 such	
 as	
 time	
 of	

occurrence,	
 distance	
 from	
 the	
 epicentre	
 to	
 the	
 station,	
 magnitude,	
 and	
 location.	

	

	

Figure	
 4	
 jAmaseis	
 Event	
 Model	
 analysis	

	

	

Figure	
 5	
 jAmaseis	
 Stream	
 View	

	

	
 	
 	
 	
 	
 8	

jAmaseis	
 contains	
 all	
 the	
 basic	
 functionality	
 required	
 in	
 a	
 seismology	
 data	

processing	
 suite	
 to	
 fit	
 the	
 Seismographs	
 in	
 Schools	
 Program	
 curriculum	
 and	

goals,	
 however	
 it	
 has	
 been	
 reported	
 to	
 be	
 a	
 struggle	
 for	
 students	
 to	
 start	
 getting	

comfortable	
 with	
 using	
 and	
 learning	
 from	
 this	
 software	
 as	
 the	
 user	
 interface	
 is	

not	
 easy	
 to	
 understand	
 and	
 not	
 many	
 learning	
 cues	
 are	
 provided.	
 The	
 software	

provides	
 the	
 functionality	
 but	
 is	
 not	
 focused	
 on	
 being	
 a	
 learning	
 tool	
 and	
 most	
 of	

the	
 intricate	
 functionality	
 also	
 is	
 not	
 used.	

2.4	
 Amaseis	

Prior	
 to	
 the	
 development	
 of	
 jAmaseis	
 a	
 developer	
 named	
 Alan	
 Jones	
 developed	

the	
 first	
 Seismology	
 data	
 processing	
 and	
 sharing	
 suite	
 known	
 as	
 Amaseis.	
 This	

application	
 recorded	
 and	
 monitored	
 data	
 from	
 a	
 seismometer	
 known	
 as	
 the	
 AS-­‐1	

(Amateur	
 Seismometer).	
 This	
 software	
 had	
 the	
 functionality	
 to	
 analyse	
 seismic	

data	
 such	
 as	
 mseed	
 or	
 SAC	
 files	
 downloaded	
 from	
 the	
 Internet.	
 The	
 two	
 major	

issues	
 with	
 this	
 software	
 was	
 that	
 it	
 ran	
 on	
 Windows	
 operating	
 system	
 only	
 and	

after	
 a	
 decade	
 of	
 updating	
 the	
 software	
 Alan	
 stopped	
 maintaining	
 Amaseis.	

Although	
 Amaseis	
 is	
 no	
 longer	
 being	
 maintained,	
 the	
 functionality	
 that	
 was	

available	
 has	
 been	
 developed	
 into	
 jAmaseis.	

	

	

Figure	
 6	
 Amaseis	
 Travel	
 Time	
 Canvas	

	
 	

	
 	
 	
 	
 	
 9	

3.	
 Design	

3.1	
 Project	
 Requirements	

The	
 requirements	
 for	
 this	
 project	
 were	
 given	
 to	
 me	
 in	
 the	
 first	
 meeting	
 I	
 had	

with	
 my	
 Industry	
 Supervisor,	
 Dr.	
 Kasper	
 van	
 Wijk.	
 	
 The	
 goal	
 of	
 this	
 project	
 was	

to	
 create	
 an	
 application	
 that	
 was	
 simple	
 and	
 intuitive,	
 and	
 develop	
 all	
 the	
 core	

functionality	
 present	
 in	
 the	
 existing	
 Seismology	
 data	
 processing	
 and	
 sharing	

suites	
 such	
 as	
 Amaseis	
 and	
 jAmaseis.	
 This	
 core	
 functionality	
 consisted	
 of	
 data	

collection	
 from	
 the	
 seismometer,	
 displaying	
 the	
 collected	
 data	
 live,	
 saving	
 the	

data	
 into	
 seismology	
 formatted	
 files	
 and	
 finally	
 being	
 able	
 to	
 share	
 this	
 saved	

data	
 online	
 with	
 other	
 schools	
 connected	
 to	
 the	
 RU	
 network.	
 The	
 application	

needed	
 to	
 be	
 cross-­‐platform	
 so	
 it	
 may	
 run	
 on	
 Linux,	
 Mac	
 OS,	
 and	
 Windows	

operating	
 system.	

	

Although	
 there	
 are	
 several	
 languages	
 such	
 as	
 C++,	
 C,	
 Java,	
 and	
 Python	
 that	
 can	
 be	

used	
 to	
 create	
 a	
 cross-­‐platform	
 application,	
 Dr.	
 Kasper	
 insisted	
 I	
 developed	
 the	

application	
 in	
 Python.	
 The	
 main	
 reason	
 behind	
 this	
 is	
 because	
 there	
 is	
 an	
 open	

source	
 Python	
 framework	
 available	
 for	
 Seismology	
 called	
 ObsPy.	
 This	

framework	
 provides	
 parsers	
 for	
 common	
 seismology	
 file	
 formats,	
 clients	
 to	

access	
 data	
 centres	
 and	
 seismological	
 signal	
 processing	
 routines,	
 which	
 allow	
 the	

manipulation	
 of	
 seismological	
 time	
 series.	
 The	
 goal	
 of	
 the	
 ObsPy	
 framework	
 is	
 to	

facilitate	
 rapid	
 application	
 development	
 for	
 seismology.	

	

Along	
 with	
 recommending	
 the	
 use	
 of	
 Python	
 and	
 ObsPy,	
 Dr.	
 Kasper	
 also	

informed	
 me	
 in	
 the	
 first	
 meeting	
 that	
 out	
 of	
 all	
 the	
 available	
 Python	
 Plotting	

libraries,	
 Matplotlib	
 is	
 one	
 of	
 the	
 most	
 comprehensive	
 2D	
 Plotting	
 libraries	

available	
 and	
 requested	
 that	
 I	
 use	
 this	
 library	
 for	
 the	
 live	
 plotting	
 of	
 the	
 data	

collected	
 from	
 the	
 TC1	
 seismometer.	

	

Therefore	
 the	
 goals	
 for	
 this	
 project	
 can	
 be	
 summarized	
 in	
 the	
 following	
 points:	

	

1. Develop	
 a	
 Python	
 application	
 that	
 uses	
 the	
 ObsPy	
 Framework	
 and	
 the	

Matplotlib	
 Plotting	
 Library	

2. The	
 application	
 must	
 provide	
 the	
 core	
 features	
 required	
 to	
 be	
 a	

Seismology	
 data	
 processing	
 and	
 sharing	
 suite.	
 These	
 consist	
 of:	
 	

a. Data	
 Collection	
 from	
 TC1	
 seismometer	

b. Live	
 plotting	
 of	
 data	
 collected	
 from	
 TC1	
 seismometer	

c. Saving	
 collected	
 data	
 into	
 seismology	
 specific	
 file	
 formats	

d. Sharing	
 saved	
 files	
 on	
 the	
 NZSeis	
 network	

3. Application	
 must	
 be	
 developed	
 keeping	
 the	
 end	
 users	
 in	
 mind,	
 who	
 are	

teachers	
 and	
 students.	
 This	
 requires	
 the	
 application	
 to	
 be:	

a. Simple	
 and	
 Intuitive	

b. Accurate	

c. Robust	

	
 	
 	
 	
 	
 10	

d. User	
 friendly	

	

The	
 aim	
 of	
 this	
 project	
 is	
 to	
 develop	
 an	
 application	
 that	
 incorporates	
 all	
 the	

requirements	
 defined	
 above.	

3.2	
 Software	
 Architecture	

Prior	
 to	
 diving	
 into	
 the	
 development	
 of	
 the	
 application,	
 I	
 spent	
 some	
 time	
 trying	
 to	

understand	
 how	
 the	
 overall	
 structure	
 of	
 the	
 application	
 would	
 look	
 like,	
 and	
 plan	

how	
 I	
 would	
 carry	
 out	
 the	
 development	
 of	
 the	
 core	
 features.	
 It	
 is	
 important	
 to	

understand	
 the	
 software	
 architecture	
 in	
 the	
 initial	
 phases	
 of	
 the	
 project	
 because	
 the	

architecture	
 once	
 created	
 will	
 become	
 harder	
 to	
 change	
 in	
 the	
 future.	
 Although	

modifying	
 individual	
 processes	
 within	
 the	
 architecture	
 can	
 be	
 done,	
 the	
 modifying	
 of	

the	
 overall	
 structure	
 will	
 become	
 difficult	
 once	
 development	
 begins.	
 	
 	

	

I	
 began	
 by	
 visualizing	
 the	
 application	
 to	
 consist	
 of	
 the	
 5	
 core	
 features	
 -­‐	
 Data	

Collecting,	
 Live	
 Plotting,	
 Saving,	
 Sharing	
 and	
 the	
 UI	
 window.	
 These	
 individual	

components	
 would	
 need	
 to	
 talk	
 to	
 each	
 other	
 via	
 some	
 form	
 of	
 inter-­‐process	

communication.	
 	

	

	

	

	

	

	

	

	

	

	

In	
 order	
 to	
 achieve	
 this,	
 I	
 looked	
 into	
 a	
 way	
 to	
 divide	
 the	
 application	
 to	
 run	
 in	

five	
 separate	
 parts.	
 This	
 type	
 of	
 software	
 architecture	
 can	
 be	
 achieved	
 by	
 using	

the	
 Multi-­‐Threading	
 or	
 Multi-­‐Processing	
 modules	
 to	
 divide	
 the	
 functionality	
 so	

that	
 they	
 ran	
 separately	
 on	
 different	
 threads	
 or	
 processes.	
 Using	
 inter-­‐
process/thread	
 communication	
 channels	
 such	
 as	
 Pipes	
 and	
 Queues	
 allows	
 for	

communication	
 between	
 the	
 various	
 components.	
 This	
 sort	
 of	
 architecture	
 is	

essential	
 for	
 this	
 application,	
 as	
 we	
 want	
 the	
 Plotting	
 process/thread	
 to	
 run	

concurrently	
 with	
 the	
 Collecting	
 process/thread	
 to	
 allow	
 real-­‐time	
 plotting	
 of	

the	
 collected	
 data.	
 A	
 non-­‐concurrent	
 architecture	
 would	
 hinder	
 the	
 possibility	
 of	

real-­‐time	
 concurrent	
 collecting	
 and	
 plotting	
 of	
 the	
 data,	
 which	
 is	
 a	
 key	

requirement	
 for	
 this	
 application.	
 With	
 a	
 concurrent	
 component	
 based	

architecture	
 we	
 can	
 spawn	
 another	
 thread	
 to	
 manage	
 the	
 UI.	
 	
 This	
 would	
 be	
 the	

ideal	
 way	
 of	
 developing	
 PyjAmaseis	
 by	
 giving	
 each	
 thread	
 its	
 own	
 set	
 of	
 tasks	
 to	

manage.	
 This	
 way	
 the	
 developers	
 in	
 the	
 future	
 would	
 find	
 it	
 easier	
 to	
 debug	
 or	

update	
 specific	
 parts	
 of	
 PyjAmaseis.	
 This	
 type	
 of	
 architecture	
 is	
 known	
 as	

Collecting	
 Plotting	

Saving	
 Sharing	

UI	

Figure	
 7	
 Component	
 and	
 connecters	
 software	
 architecture	

	
 	
 	
 	
 	
 11	

component	
 and	
 connectors	
 architecture	
 where	
 there	
 is	
 emphasis	
 on	
 the	

separation	
 of	
 concerns	
 (SoC)	
 based	
 on	
 the	
 wide-­‐ranging	
 functionality	
 provided	

by	
 the	
 application.	
 Separation	
 of	
 concerns	
 is	
 a	
 design	
 principle	
 for	
 separating	
 a	

computer	
 program	
 into	
 distinct	
 parts	
 in	
 such	
 a	
 way	
 that	
 each	
 component	
 carries	

out	
 its	
 own	
 tasks	
 but	
 is	
 a	
 part	
 of	
 the	
 whole	
 system.	

4.	
 Implementation	

	

Before	
 I	
 could	
 begin	
 I	
 first	
 setup	
 the	
 environment.	
 I	
 installed	
 Python	
 2.7.8	
 along	

with	
 the	
 PySerial	
 module.	
 I	
 had	
 experience	
 with	
 using	
 the	
 Eclipse	
 IDE,	
 hence	

looked	
 into	
 a	
 way	
 to	
 write,	
 compile	
 and	
 run	
 Python	
 scripts	
 on	
 Eclipse.	
 To	
 achieve	

this	
 I	
 downloaded	
 PyDev	
 and	
 followed	
 a	
 YouTube	
 video	
 (link)	
 to	
 setup	
 the	

environment.	
 PyDev	
 is	
 a	
 Python	
 IDE	
 for	
 Eclipse.	
 	
 Dr.	
 Kasper	
 offered	
 me	
 a	
 TC-­‐1	

seismometer	
 so	
 that	
 I	
 could	
 develop	
 the	
 project	
 at	
 home.	
 	

4.1	
 Collecting	

I	
 began	
 the	
 implementation	
 of	
 this	
 project	
 by	
 focusing	
 on	
 one	
 component	
 of	
 the	

architecture	
 at	
 a	
 time	
 starting	
 with	
 the	
 Collecting	
 component.	
 However,	
 because	

the	
 Collecting	
 component	
 and	
 Plotting	
 component	
 are	
 interrelated	
 I	
 worked	
 on	

them	
 simultaneously	
 but	
 for	
 the	
 purpose	
 of	
 this	
 report	
 I	
 would	
 like	
 to	
 explain	

each	
 component	
 individually	
 and	
 will	
 draw	
 from	
 other	
 components	
 where	

required.	

4.1.1	
 Sampling	
 Data	

I	
 started	
 off	
 by	
 using	
 a	
 small	
 Python	
 script	
 that	
 was	
 obtained	
 from	
 –
http://eliaselectronics.com/plotting-­‐serial-­‐data-­‐using-­‐gnuplot-­‐and-­‐python/	
 that	

saved	
 and	
 printed	
 the	
 data	
 coming	
 in	
 from	
 the	
 TC1	
 seismometer	
 via	
 the	
 serial	

port.	
 I	
 used	
 the	
 stream.readline()	
 method	
 provided	
 by	
 the	
 PySerial	
 module	
 to	

read	
 each	
 value	
 from	
 the	
 seismometer.	
 After	
 collecting	
 a	
 fixed	
 amount	
 of	
 samples	

the	
 script	
 then	
 saves	
 the	
 recorded	
 values	
 into	
 a	
 .dat	
 file	
 (data.dat),	
 which	
 would	

then	
 be	
 plotted	
 using	
 an	
 application	
 called	
 GNUPlot.	
 	

	

	
 	
 	
 	
 	
 12	

	

Figure	
 8	
 Python	
 script	
 that	
 reads	
 data	
 from	
 TC1	
 and	
 saves	
 into	
 .dat-­‐formatted	
 file	

	

Figures	
 9	
 and	
 10	
 shows	
 the	
 data	
 saved	
 in	
 a	
 data.dat	
 file,	
 and	
 an	
 illustration	
 of	

that	
 data	
 after	
 being	
 plotted	
 using	
 GNUPlot.	
 Here	
 we	
 can	
 see	
 most	
 values	
 lie	

between	
 32000	
 and	
 33000.	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	
 9	
 Data	
 from	
 TC1	
 saved	
 in	

data.dat	

Figure	
 10	
 GNUPlot	
 plotting	
 data	
 from	
 data.dat	

	
 	
 	
 	
 	
 13	

4.1.2	
 Continuous	
 Collection	

After	
 sampling	
 the	
 values	
 I	
 shifted	
 to	
 a	
 continuous	
 form	
 of	
 reading	
 the	
 data	
 from	

the	
 TC1	
 seismometer	
 by	
 using	
 an	
 infinite	
 while	
 loop	
 in	
 Python	
 and	
 based	
 on	
 the	

time	
 and	
 other	
 factors,	
 carry	
 out	
 different	
 tasks	
 or	
 send	
 signals	
 to	
 other	

components	
 of	
 the	
 application	
 to	
 change	
 to	
 the	
 appropriate	
 settings.	
 For	
 example	

when	
 the	
 hour	
 changes	
 the	
 Collecting	
 component	
 sends	
 a	
 signal	
 to	
 the	
 Plotting	

component	
 to	
 start	
 plotting	
 on	
 a	
 new	
 line.	
 The	
 code	
 sample	
 below	
 shows	
 this	

behaviour,	
 the	
 while	
 True:	
 	
 loop	
 that	
 continuously	
 reads	
 the	
 values	
 sent	
 by	
 the	

TC1	
 Seismometer	
 over	
 the	
 serial	
 port	
 along	
 with	
 saving	
 mseed	
 files	
 every	
 hour.	

	

	

Figure	
 11	
 PyjAmaseis	
 using	
 an	
 infinitely	
 loop	
 to	
 continuously	
 collect	
 data	
 from	
 TC1	
 seismometer	

	

4.2	
 Plotting	

The	
 plotting	
 component	
 of	
 the	
 application	
 focuses	
 on	
 providing	
 the	
 user	
 with	
 a	

visual	
 representation	
 of	
 the	
 data	
 that	
 is	
 collected	
 by	
 the	
 TC1	
 seismometer.	
 The	

aim	
 of	
 this	
 component	
 is	
 to	
 provide	
 a	
 live	
 plot	
 of	
 the	
 data	
 that	
 is	
 to	
 sub-­‐second	

precision.	
 In	
 the	
 field	
 of	
 seismology	
 plotting	
 data	
 without	
 any	
 latency	
 is	
 of	
 high	

importance.	
 This	
 will	
 be	
 further	
 explained	
 in	
 the	
 results	
 section	
 of	
 this	
 report.	

4.2.1	
 Static	
 Plotting	

As	
 covered	
 in	
 the	
 Collecting	
 component,	
 I	
 used	
 a	
 third	
 party	
 software	
 named	

GNUPlot	
 to	
 plot	
 a	
 .dat	
 file	
 that	
 contained	
 samples	
 of	
 values	
 collected	
 from	
 the	

TC1	
 seismometer.	
 Instead	
 of	
 plotting	
 the	
 data	
 using	
 an	
 external	
 application,	
 I	

looked	
 into	
 a	
 way	
 to	
 plot	
 the	
 data	
 as	
 it	
 was	
 being	
 collected.	
 The	
 first	
 step	
 I	
 took	

was	
 to	
 create	
 a	
 static	
 plot	
 after	
 every	
 hour.	
 These	
 static	
 plots	
 plotted	
 the	
 values	

that	
 were	
 stored	
 in	
 an	
 array	
 which	
 were	
 used	
 to	
 save	
 mseed	
 or	
 SAC	
 files.	
 These	

are	
 seismology	
 data	
 file	
 formats.	
 	

	

	

	

	

	

	
 	
 	
 	
 	
 14	

	

	

	

	

	

	

	

	

	

	

	

Figure	
 12	
 Plot	
 of	
 data	
 displayed	
 when	
 trace.plot()	
 method	
 is	
 called	
 after	
 saving	
 an	
 mseed	
 file	

	

4.2.2	
 Version	
 Control	
 Problem	

I	
 chose	
 to	
 implement	
 a	
 static	
 plot	
 as	
 I	
 was	
 developing	
 each	
 component	
 in	

versions,	
 each	
 version	
 built	
 upon	
 the	
 previous	
 version.	
 I	
 faced	
 a	
 problem	
 where	
 I	

started	
 having	
 many	
 individual	
 Python	
 scripts	
 each	
 with	
 incremental	
 changes	

and	
 it	
 became	
 difficult	
 to	
 keep	
 track	
 of	
 the	
 latest	
 version	
 of	
 the	
 application.	

Therefore	
 I	
 started	
 using	
 Git	
 version	
 control	
 system	
 to	
 manage	
 my	
 project.	
 This	

effectively	
 solved	
 the	
 problem	
 of	
 versioning	
 and	
 made	
 it	
 easier	
 to	
 create	

branches	
 when	
 I	
 started	
 working	
 on	
 a	
 new	
 functionality	
 so	
 that	
 I	
 always	
 have	
 a	

working	
 copy	
 of	
 PyjAmaseis	
 before	
 I	
 began	
 any	
 new	
 implementation.	
 Dr.	
 Kasper	

had	
 offered	
 me	
 to	
 work	
 on	
 the	
 project	
 in	
 his	
 office	
 where	
 he	
 had	
 setup	
 a	
 station	

with	
 a	
 TC1	
 seismometer.	
 Therefore	
 any	
 development	
 that	
 I	
 did	
 at	
 home	
 or	
 at	
 his	

office,	
 I	
 could	
 push	
 and	
 pull	
 accordingly	
 with	
 GitHub,	
 which	
 made	
 it	
 easier	
 to	

manage	
 the	
 development	
 of	
 the	
 application.	

4.2.3	
 Dynamic	
 Plotting	

	

After	
 developing	
 a	
 static	
 plot	
 feature	
 in	
 the	
 application,	
 I	
 focused	
 my	
 attention	
 on	

creating	
 a	
 dynamic	
 plot	
 that	
 plotted	
 data	
 concurrently	
 as	
 it	
 was	
 being	
 read	
 from	

the	
 TC1	
 seismometer.	
 As	
 part	
 of	
 the	
 requirements	
 I	
 received	
 from	
 Dr.	
 Kasper,	

Matplotlib	
 was	
 the	
 plotting	
 library	
 for	
 Python	
 he	
 requested	
 me	
 to	
 use	
 for	
 the	

plotting	
 functionality	
 of	
 this	
 application.	
 The	
 reason	
 behind	
 this	
 is	
 not	
 only	

because	
 Matplotlib	
 is	
 a	
 very	
 comprehensive	
 2D	
 plotting	
 library	
 but	
 also	
 Dr.	

Kasper	
 has	
 used	
 it	
 in	
 previous	
 projects,	
 and	
 there	
 is	
 a	
 lot	
 of	
 support	
 available	
 for	

it	
 on	
 the	
 web.	
 Although	
 Matplotlib	
 provides	
 support	
 for	
 plotting	
 various	
 types	

and	
 styles	
 of	
 static	
 graphs	
 and	
 plots	
 when	
 it	
 comes	
 to	
 live	
 plotting,	
 the	
 plotting	

functions	
 within	
 the	
 library	
 are	
 highly	
 inefficient.	

	

The	
 end	
 goal	
 of	
 this	
 Dynamic	
 Plotting	
 component	
 is	
 contained	
 in	
 the	
 following	

points.	
 Dr.	
 Kasper	
 provided	
 specifications	
 once	
 I	
 started	
 working	
 on	
 the	
 Plotting	

component	
 of	
 PyjAmaseis.	
 These	
 requirements	
 were:	

	
 	
 	
 	
 	
 15	

	

1. Display	
 a	
 24	
 Hour	
 plot	

2. Show	
 0-­‐60	
 minutes	
 on	
 the	
 x	
 axis	

3. Show	
 Current	
 UTC	
 Hour	
 on	
 the	
 Top	
 of	
 the	
 Y	
 axis	
 and	
 increment	
 hour	
 as	
 it	

comes	
 down	
 towards	
 0	

4. Clear	
 Plot	
 at	
 the	
 end	
 of	
 24	
 hours	
 and	
 restart	
 plotting	
 again	
 from	
 the	
 top	

	

I	
 began	
 the	
 live	
 plotting	
 functionality	
 by	
 simply	
 plotting	
 an	
 array	
 that	
 contained	

all	
 the	
 values	
 that	
 were	
 read	
 from	
 the	
 TC1	
 seismometer.	
 	
 All	
 the	
 values	
 that	
 were	

read	
 were	
 constantly	
 being	
 appended	
 to	
 the	
 array.	
 The	
 existing	
 plot	
 would	
 be	

cleared	
 every	
 time	
 and	
 array	
 containing	
 old	
 and	
 new	
 values	
 were	
 redrawn	
 over	

and	
 over	
 again.	
 	

	

	

Figure	
 13	
 PyjAmaseis	
 first	
 attempt	
 at	
 live	
 plotting	

	

This	
 form	
 of	
 plotting	
 kept	
 re-­‐plotting	
 an	
 array	
 that	
 contained	
 new	
 values	
 every	

10	
 milliseconds.	
 This	
 proved	
 to	
 be	
 highly	
 inefficient	
 however	
 I	
 did	
 not	
 notice	
 the	

implications	
 of	
 this	
 inefficiency	
 until	
 I	
 ran	
 the	
 application	
 for	
 more	
 than	
 5-­‐7	

minutes.	
 Because	
 of	
 the	
 current	
 axis,	
 the	
 plot	
 would	
 only	
 show	
 the	
 first	
 2	
 or	
 3	

minutes	
 of	
 data	
 hence	
 the	
 inefficiency	
 was	
 hardly	
 noticeable	
 but	
 after	
 I	
 worked	

on	
 setting	
 the	
 right	
 x	
 and	
 y	
 axis	
 this	
 became	
 a	
 major	
 issue.	
 I	
 started	
 noticing	
 a	

delay	
 between	
 the	
 time	
 I	
 physically	
 shook	
 the	
 seismometer	
 and	
 when	
 the	

application	
 plotted	
 this	
 incident.	
 Therefore	
 instead	
 of	
 sending	
 the	
 complete	

array	
 with	
 all	
 the	
 values,	
 I	
 sent	
 10	
 values	
 at	
 a	
 time	
 and	
 instead	
 of	
 clearing	
 the	

	
 	
 	
 	
 	
 16	

plot	
 I	
 tried	
 to	
 plot	
 the	
 10	
 new	
 values	
 over	
 the	
 currently	
 existing	
 plot.	
 However	

this	
 did	
 not	
 solve	
 the	
 latency	
 issues.	
 I	
 will	
 discuss	
 this	
 in	
 further	
 detail	
 after	

explaining	
 how	
 I	
 set	
 the	
 correct	
 x	
 and	
 y-­‐axis	
 for	
 the	
 plot.	

4.2.4	
 Calibrating	
 the	
 axis	

Setting	
 the	
 x-­‐axis	
 of	
 the	
 figure	
 was	
 relatively	
 simple.	
 Using	
 the	
 set	
 xticks	
 method	

that	
 was	
 provided	
 in	
 the	
 Matplotlib	
 module,	
 I	
 set	
 the	
 x-­‐axis	
 to	
 go	
 from	
 0	
 –	
 60	

with	
 an	
 interval	
 of	
 1.	
 This	
 can	
 be	
 seen	
 in	
 the	
 figure	
 14.	
 When	
 plotting	
 I	
 send	
 the	

plot	
 function	
 2	
 arrays	
 –	
 x	
 and	
 y.	
 The	
 y	
 values	
 are	
 provided	
 by	
 the	
 seismometer	
 at	

a	
 rate	
 of	
 18	
 values	
 per	
 second.	
 Initially	
 I	
 was	
 sending	
 the	
 y	
 array	
 with	
 values	

received	
 from	
 the	
 TC1	
 seismometer	
 and	
 the	
 x	
 array,	
 which	
 had	
 incremental	

values	
 starting	
 from	
 0.1	
 onwards.	
 This	
 was	
 an	
 erroneous	
 way	
 of	
 plotting,	
 as	
 the	
 y	

values	
 did	
 not	
 have	
 a	
 representative	
 corresponding	
 minute	
 x	
 value	
 to	
 link	
 with.	

Therefore	
 when	
 a	
 value	
 is	
 read	
 from	
 the	
 input	
 buffer	
 of	
 the	
 serial	
 port	
 (i.e.	
 sent	

by	
 TC1	
 seismometer),	
 the	
 exact	
 minute,	
 second	
 and	
 millisecond	
 it	
 was	
 read	
 at	

would	
 be	
 recorded	
 in	
 the	
 x	
 array.	
 This	
 allowed	
 each	
 y	
 value	
 to	
 have	
 an	
 accurate	
 x	

value	
 and	
 thus	
 accuracy	
 of	
 plotting	
 was	
 achieved.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Setting	
 the	
 y-­‐axis	
 labels	
 was	
 a	
 little	
 trickier.	
 The	
 aim	
 here	
 was	
 to	
 have	
 24	
 plots	
 in	

1	
 plot.	
 Matplotlib	
 allows	
 us	
 to	
 create	
 sub-­‐plots	
 within	
 1	
 figure.	
 That	
 means	
 you	

can	
 create	
 multiple	
 separate	
 plots	
 within	
 one	
 window.	
 Because	
 I	
 needed	
 to	

Figure	
 14	
 PyjAmaseis	
 x-­‐axis	
 labels	
 (0-­‐60)	

	
 	
 	
 	
 	
 17	

display	
 24	
 plots,	
 plot	
 of	
 a	
 whole	
 day,	
 I	
 tried	
 to	
 create	
 multiple	
 subplots.	
 When	
 I	

created	
 24	
 sub	
 plots	
 the	
 outcome	
 was	
 not	
 pleasing.	
 The	
 data	
 plotted	
 couldn’t	
 be	

clearly	
 seen,	
 as	
 the	
 plots	
 were	
 too	
 small	
 and	
 too	
 close	
 to	
 each	
 other,	
 and	
 even	
 the	

axis	
 labels	
 were	
 hard	
 to	
 understand.	
 Hence	
 I	
 decided	
 to	
 move	
 away	
 from	
 making	

multiple	
 subplots,	
 and	
 used	
 only	
 1	
 subplot	
 effectively	
 by	
 translating	
 the	
 values	

according	
 to	
 the	
 correct	
 hour.	
 This	
 proved	
 to	
 be	
 more	
 effective	
 and	
 helped	
 create	

a	
 user	
 interface	
 that	
 wasn’t	
 cluttered	
 and	
 allowed	
 the	
 users	
 to	
 see	
 the	
 plotting	

much	
 more	
 clearly.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

For	
 setting	
 the	
 y-­‐axis	
 labels	
 to	
 show	
 24	
 hours	
 starting	
 from	
 the	
 current	
 hour,	
 I	

first	
 wrote	
 a	
 method	
 that	
 calculates	
 the	
 number	
 that	
 occurs	
 the	
 most	
 in	
 an	
 array,	

and	
 used	
 the	
 method	
 to	
 calculate	
 the	
 value	
 TC1	
 provides	
 when	
 it	
 is	
 at	
 rest.	
 That	

means,	
 when	
 the	
 seismometer	
 is	
 not	
 disturbed	
 by	
 any	
 seismic	
 activity,	
 it	
 rests	
 on	

or	
 near	
 a	
 certain	
 value	
 and	
 my	
 aim	
 was	
 to	
 find	
 out	
 what	
 that	
 was.	
 	
 After	
 several	

tests	
 I	
 found	
 that	
 the	
 mode	
 number	
 was	
 approximately	
 32750.	
 With	
 this	

information	
 I	
 understood	
 that	
 the	
 values	
 provided	
 by	
 the	
 TC1	
 seismometer	

ranged	
 between	
 the	
 values	
 of	
 30750	
 and	
 34750	
 with	
 32750	
 being	
 at	
 the	
 center	

of	
 oscillation.	
 Thus	
 I	
 multiplied	
 the	
 range,	
 which	
 is	
 4000	
 (34750-­‐30750)	
 by	
 24	
 to	

create	
 an	
 axis	
 that	
 could	
 fit	
 24	
 separate	
 plots.	
 Therefore	
 the	
 y-­‐axis	
 then	
 ranged	

from	
 30750	
 to	
 130750.	
 Depending	
 on	
 the	
 hour	
 the	
 values	
 from	
 the	
 TC1	

seismometer	
 are	
 translated	
 by	
 a	
 constant	
 to	
 plot	
 according	
 to	
 the	
 appropriate	

hour.	
 Once	
 I	
 managed	
 to	
 get	
 24	
 plots	
 to	
 show	
 on	
 1	
 subplot,	
 I	
 looked	
 into	
 getting	

the	
 ytick	
 labels.	
 This	
 was	
 required	
 because	
 until	
 now	
 the	
 y-­‐axis	
 labels	
 were	
 not	

informative	
 as	
 it	
 was	
 showing	
 a	
 range	
 of	
 values	
 from	
 30750	
 to	
 130750.	
 They	

have	
 to	
 display	
 hours	
 so	
 using	
 the	
 datetime	
 module	
 I	
 calculated	
 the	
 current	
 hour	

and	
 wrote	
 a	
 method	
 that	
 used	
 this	
 information	
 to	
 generate	
 an	
 array	
 containing	

the	
 next	
 24	
 hours	
 along	
 with	
 providing	
 their	
 appropriate	
 am/pm	
 information.	

Figure	
 9	
 Using	
 add_sublots()	
 to	
 create	
 24	
 subplots	
 in	
 one	
 figure	

	
 	
 	
 	
 	
 18	

The	
 calculated	
 times	
 for	
 the	
 labels	
 are	
 in	
 UTC	
 time	
 as	
 per	
 requirement.	
 Thus	
 the	

end	
 result	
 of	
 calibrating	
 the	
 x	
 and	
 y-­‐axis	
 can	
 be	
 seen	
 in	
 figure	
 16	
 where	
 the	
 x-­‐axis	

ranges	
 from	
 0	
 to	
 60	
 to	
 represent	
 minutes	
 and	
 the	
 y	
 axis	
 shows	
 the	
 hour	

information	
 starting	
 at	
 8	
 AM	
 at	
 the	
 top	
 and	
 goes	
 through	
 24	
 hours	
 as	
 it	
 reaches	

the	
 bottom.	
 Note	
 when	
 the	
 plot	
 reaches	
 the	
 end	
 of	
 the	
 hour	
 it	
 is	
 shifted	
 down	
 by	

an	
 hour	
 and	
 starts	
 plotting	
 again	
 and	
 after	
 completing	
 24	
 hours	
 of	
 plotting	
 the	

plot	
 is	
 cleared	
 and	
 the	
 plotting	
 begins	
 again	
 at	
 the	
 top.	
 	

	

I	
 would	
 like	
 to	
 briefly	
 mention	
 here	
 how	
 the	
 graph	
 plots	
 without	
 breaks.	

Basically	
 every	
 array	
 that	
 is	
 sent	
 to	
 the	
 plotting	
 component	
 of	
 the	
 application	

contains	
 a	
 new	
 set	
 of	
 values	
 that	
 were	
 read	
 from	
 the	
 TC1	
 seismometer	
 and	
 in	

order	
 to	
 link	
 the	
 previously	
 drawn	
 plot	
 to	
 the	
 current	
 set	
 of	
 values,	
 I	
 store	
 the	

last	
 value	
 of	
 the	
 previous	
 array	
 and	
 insert	
 it	
 to	
 the	
 beginning	
 of	
 the	
 new	
 array	
 of	

values.	
 This	
 way	
 the	
 new	
 set	
 of	
 values	
 always	
 begin	
 where	
 the	
 previous	
 plot	

completed	
 and	
 this	
 ensures	
 continuity.	
 However,	
 when	
 a	
 change	
 in	
 hour	
 is	

detected,	
 the	
 new	
 array	
 with	
 the	
 set	
 of	
 values	
 from	
 the	
 new	
 hour	
 will	
 not	
 connect	

to	
 the	
 last	
 value	
 from	
 the	
 previous	
 hour.	
 Initially	
 I	
 faced	
 a	
 problem	
 where	
 the	
 line	

would	
 cut	
 across	
 the	
 graph	
 from	
 the	
 right	
 edge	
 where	
 the	
 plotting	
 finished	
 for	

the	
 previous	
 hour	
 to	
 the	
 left	
 edge	
 where	
 the	
 plotting	
 of	
 the	
 new	
 hour	
 began,	
 but	

by	
 placing	
 a	
 simple	
 hour	
 check	
 I	
 prevent	
 the	
 two	
 plots	
 from	
 being	
 connected.	

Therefore	
 as	
 long	
 as	
 the	
 hour	
 is	
 the	
 same,	
 the	
 last	
 value	
 of	
 the	
 previous	
 array	
 will	

be	
 inserted	
 to	
 the	
 new	
 array	
 of	
 values,	
 and	
 when	
 an	
 hour	
 change	
 is	
 detected	
 this	

will	
 not	
 take	
 place.	

	

	

Figure	
 16	
 PyjAmaseis	
 y-­‐axis	
 labels	
 show	
 hours	
 in	
 12-­‐hour	
 format	
 UTC	
 time	

	
 	
 	
 	
 	
 19	

4.2.5	
 Plotting	
 Problems	

I	
 briefly	
 mentioned	
 earlier	
 that	
 the	
 Matplotlib	
 plotting	
 function	
 is	
 quite	

inefficient.	
 The	
 problems	
 I	
 faced	
 due	
 to	
 this	
 inefficiency,	
 the	
 approaches	
 I	
 took	

and	
 the	
 solutions	
 to	
 the	
 problems	
 will	
 be	
 explained	
 here	
 in	
 detail.	

	

After	
 setting	
 the	
 x	
 and	
 y-­‐axis	
 labels,	
 I	
 set	
 the	
 application	
 to	
 a	
 test	
 to	
 see	
 if	
 it	
 can	

plot	
 24	
 hours	
 of	
 continuous	
 data	
 and	
 refresh	
 and	
 start	
 again.	
 However	
 within	
 15	

minutes	
 the	
 graph	
 starts	
 distorting	
 and	
 doesn’t	
 return	
 back	
 to	
 normal.	
 This	
 can	

be	
 seen	
 in	
 figure	
 17.	

	

	

	

Figure	
 10	
 PyjAmaseis	
 distorted	
 plot	

	

To	
 understand	
 this	
 behavior	
 I	
 printed	
 the	
 y	
 array	
 before	
 plotting	
 to	
 see	
 if	
 it	

contained	
 any	
 odd	
 or	
 erroneous	
 values.	
 The	
 problem	
 here	
 was	
 I	
 was	
 receiving	

values	
 from	
 the	
 TC1	
 seismometer	
 that	
 when	
 plotted	
 resulted	
 in	
 plots	
 as	
 shown	
 in	

figure	
 17.	
 For	
 example,	
 figure	
 18	
 shows	
 that	
 in	
 an	
 array	
 of	
 values	
 ranging	
 from	

87000	
 to	
 88000,	
 an	
 unexpected	
 919	
 value	
 gets	
 saved	
 in	
 the	
 array.	
 This	
 causes	

the	
 plot	
 to	
 draw	
 a	
 line	
 from	
 the	
 previous	
 value	
 to	
 the	
 919	
 value	
 on	
 the	
 y-­‐axis.	

This	
 results	
 in	
 distorted	
 plots.	
 Initially	
 I	
 thought	
 this	
 could	
 have	
 been	
 a	
 hardware	

problem,	
 however	
 after	
 thorough	
 inspection	
 of	
 the	
 errors	
 printed	
 in	
 the	
 output	

console	
 I	
 realized	
 that	
 I	
 have	
 no	
 need	
 to	
 decode	
 the	
 values	
 that	
 are	
 read	
 from	
 the	

TC1	
 seismometer.	
 I	
 was	
 receiving	
 errors	
 such	
 as	
 “ValueError:	
 invalid	
 literal	
 for	

int()	
 with	
 base	
 10:	
 ''”	
 and	
 “TypeError:	
 Can't	
 convert	
 ‘str’	
 object	
 to	
 int	
 implicitly”.	

When	
 a	
 value	
 is	
 placed	
 in	
 the	
 serial	
 port	
 input	
 buffer	
 it	
 contains	
 the	
 value	
 and	
 a	

new	
 line	
 character	
 for	
 example	
 “32700\r\n”	
 when	
 I	
 decode	
 it	
 “decode	
 =	

readValuefromTC1.decode	
 (‘utf8’)”	
 the	
 resulting	
 decoded	
 string	
 is	
 “32700rn”	

therefore	
 it	
 cannot	
 be	
 converted	
 in	
 to	
 an	
 integer	
 and	
 hence	
 a	
 lot	
 of	
 errors	
 were	

	
 	
 	
 	
 	
 20	

thrown	
 due	
 to	
 this	
 small	
 mistake.	
 I	
 realized	
 after	
 that	
 there	
 was	
 no	
 need	
 to	

decode	
 the	
 values	
 and	
 just	
 by	
 casting	
 the	
 read	
 string	
 into	
 an	
 int	
 I	
 would	
 receive	

the	
 value	
 I	
 need	
 for	
 plotting	
 (plottingValue	
 =	
 int(serialPort.readline())).	

	

Although	
 the	
 distortion	
 of	
 the	
 plots	
 stopped,	
 there	
 was	
 a	
 delay	
 that	
 was	
 noticed	

from	
 when	
 a	
 simulated	
 seismic	
 activity	
 occurred	
 and	
 when	
 the	
 application	

actually	
 plotted	
 it	
 live.	
 This	
 delay	
 would	
 become	
 noticeable	
 after	
 about	
 5-­‐7	

minutes	
 and	
 it	
 kept	
 increasing.	
 A	
 noticeable	
 delay	
 of	
 3-­‐7	
 seconds	
 increased	
 into	
 a	

delay	
 of	
 several	
 minutes	
 as	
 the	
 plotting	
 went	
 on.	
 	

	

I	
 was	
 under	
 the	
 impression	
 that	
 the	
 delay	
 was	
 caused	
 due	
 to	
 the	
 fact	
 that	
 I	
 was	

sending	
 the	
 whole	
 array	
 to	
 be	
 replotted	
 each	
 time	
 but	
 even	
 after,	
 when	
 I	
 sent	

only	
 the	
 10	
 recent	
 values	
 collected	
 from	
 the	
 TC1	
 to	
 the	
 plotting	
 component	
 –	
 the	

delay	
 still	
 persisted.	
 	

	

Up	
 till	
 this	
 point	
 I	
 was	
 using	
 the	
 threading	
 module	
 for	
 Python	
 to	
 create	
 a	
 multi-­‐
threaded	
 application,	
 one	
 thread	
 for	
 collecting	
 and	
 one	
 thread	
 for	
 plotting	
 and	

was	
 wondering	
 if	
 it	
 was	
 due	
 to	
 the	
 Global	
 interpreter	
 lock	
 (GIL)	
 in	
 Python	
 which	

prevents	
 multiple	
 threads	
 from	
 running	
 concurrently	
 that	
 delays	
 were	
 being	

caused.	
 I	
 also	
 realized	
 that	
 because	
 the	
 two	
 threads	
 can	
 not	
 run	
 concurrently	
 we	

can	
 never	
 get	
 true	
 parallelism	
 and	
 one	
 thread	
 would	
 always	
 lag	
 behind	
 the	
 other	

as	
 their	
 instructions	
 are	
 executed	
 one	
 after	
 the	
 other.	
 At	
 this	
 point	
 I	
 decided	
 to	

invest	
 my	
 time	
 to	
 learn	
 about	
 multiprocessing	
 in	
 Python	
 and	
 re-­‐engineer	
 the	

architecture	
 if	
 required.	
 	

	

Figure	
 18	
 Cause	
 of	
 distorted	
 plots	
 found	
 to	
 be	
 incorrect	
 value	
 in	
 plotting	
 array	

	
 	
 	
 	
 	
 21	

The	
 threading	
 module	
 uses	
 threads	
 whereas	
 the	
 multiprocessing	
 module	
 uses	

processes.	
 The	
 difference	
 is	
 that	
 threads	
 run	
 in	
 the	
 same	
 memory	
 space,	
 while	

processes	
 have	
 separate	
 memory.	
 This	
 makes	
 it	
 a	
 bit	
 harder	
 to	
 share	
 objects	

between	
 processes	
 with	
 multiprocessing.	
 Since	
 threads	
 use	
 the	
 same	
 memory,	

precautions	
 have	
 to	
 be	
 taken	
 or	
 two	
 threads	
 will	
 write	
 to	
 the	
 same	
 memory	
 at	

the	
 same	
 time.	
 This	
 is	
 what	
 the	
 Global	
 Interpreter	
 Lock	
 is	
 for.	

	

Therefore	
 upon	
 realizing	
 that	
 threads	
 will	
 not	
 allow	
 for	
 true	
 parallelism	
 I	
 looked	

into	
 turning	
 PyjAmaseis	
 into	
 a	
 multiprocessing	
 architecture	
 in	
 hopes	
 that	
 the	

application	
 would	
 become	
 more	
 efficient	
 and	
 the	
 delay	
 problems	
 would	
 be	

addressed.	
 I	
 rewrote	
 PyjAmaseis	
 into	
 a	
 multi-­‐processing	
 application	
 and	
 used	

Pipes	
 to	
 send	
 data	
 from	
 one	
 process	
 to	
 another.	
 The	
 process	
 of	
 sending	
 data	

through	
 a	
 pipe	
 is	
 known	
 as	
 Pickling	
 (at	
 the	
 sending	
 end)	
 and	
 Unpickling	
 (at	
 the	

receiving	
 end).	
 Although	
 at	
 first	
 the	
 re-­‐engineering	
 of	
 the	
 architecture	
 seemed	

like	
 it	
 solved	
 the	
 delay	
 problem,	
 but	
 to	
 my	
 dismay,	
 it	
 still	
 persisted	
 and	
 went	

unnoticed	
 for	
 a	
 longer	
 period	
 of	
 time.	
 The	
 application	
 was	
 running	
 more	

efficiently	
 now	
 for	
 sure,	
 however,	
 the	
 problem	
 still	
 persisted.	
 The	
 delay	
 couldn’t	

be	
 noticed	
 till	
 the	
 application	
 ran	
 for	
 3	
 hours	
 but	
 soon	
 after;	
 the	
 delay	
 was	

noticeable	
 and	
 kept	
 on	
 increasing.	

	

Upon	
 discussions	
 with	
 Dr.	
 Robert	
 Sheehan	
 at	
 the	
 Computer	
 Science	
 Dept.	

regarding	
 this	
 bizarre	
 behaviour	
 and	
 delay	
 problems,	
 he	
 recommended	
 I	
 conduct	

some	
 timing	
 efficiency	
 tests	
 to	
 see	
 what	
 component,	
 or	
 methods	
 inside	
 a	

component	
 was	
 causing	
 this	
 problem.	
 I	
 found	
 that	
 the	
 easiest	
 way	
 to	
 do	
 this	

without	
 having	
 to	
 spend	
 a	
 lot	
 of	
 time	
 creating	
 tests	
 cases	
 was	
 to	
 use	
 the	
 time	

module	
 to	
 create	
 two	
 timestamps	
 before	
 and	
 after	
 certain	
 method	
 calls	
 and	

operations	
 within	
 the	
 collecting	
 and	
 plotting	
 components.	
 After	
 the	
 block	
 of	
 code	

I’m	
 testing	
 for	
 is	
 run,	
 the	
 time	
 recorded	
 after	
 its	
 completion	
 is	
 subtracted	
 from	

the	
 time	
 that	
 was	
 recorded	
 before	
 it	
 started.	
 This	
 is	
 demonstrated	
 in	
 the	
 code	

sample	
 in	
 figure	
 19.	

	

	

Figure	
 19	
 Computing	
 the	
 time	
 taken	
 to	
 execute	
 the	
 plot.draw	
 method	

	

This	
 provided	
 me	
 with	
 a	
 microsecond	
 value	
 of	
 how	
 long	
 each	
 section	
 of	
 the	
 code	

ran	
 for.	
 To	
 my	
 surprise	
 I	
 noticed	
 that	
 the	
 plot.draw()	
 method	
 in	
 the	
 plotting	

component	
 of	
 the	
 application	
 took	
 0.39	
 seconds	
 to	
 begin	
 with	
 and	
 kept	

increasing	
 to	
 much	
 larger	
 time	
 intervals	
 as	
 time	
 progressed.	
 What	
 I	
 discovered	

was	
 that	
 although	
 I	
 was	
 only	
 sending	
 the	
 most	
 recent	
 10	
 values	
 that	
 were	
 read	

from	
 the	
 TC1	
 seismometer,	
 when	
 these	
 values	
 are	
 sent	
 for	
 plotting,	
 all	
 the	
 points	

that	
 were	
 plotted	
 previously	
 were	
 stored	
 and	
 re-­‐plotted	
 along	
 with	
 the	
 new	

	
 	
 	
 	
 	
 22	

points.	
 Due	
 to	
 the	
 draw	
 method	
 being	
 so	
 inefficient	
 this	
 caused	
 the	
 plotting	

component	
 to	
 slow	
 down	
 as	
 the	
 number	
 of	
 points	
 it	
 had	
 to	
 redraw	
 kept	

increasing.	

	

	

Figure	
 20	
 shows	
 the	
 how	
 data	
 is	
 sent	
 from	
 TC1,	
 collected	
 by	
 Collecting	
 Process	
 and	
 sent	
 Plotting	

Process	
 via	
 a	
 Pipe	

	

I	
 will	
 now	
 provide	
 specific	
 information	
 about	
 the	
 nature	
 of	
 the	
 problem,	
 and	

explain	
 how	
 I	
 came	
 to	
 address	
 this	
 issue	
 with	
 the	
 use	
 of	
 a	
 very	
 fast	
 rendering	

technique	
 known	
 as	
 Blitting.	
 In	
 my	
 timing	
 efficiency	
 tests	
 I	
 also	
 recorded	
 several	

other	
 key	
 information	
 that	
 led	
 me	
 to	
 understand	
 how	
 the	
 delay	
 caused	
 by	
 this	

one	
 method	
 affected	
 the	
 whole	
 program.	
 Below	
 is	
 a	
 diagram	
 depicting	
 the	

structure	
 of	
 PyjAmaseis	
 and	
 how	
 it	
 is	
 connected	
 to	
 TC1.	

	

The	
 following	
 statistics	
 were	
 calculated	
 and	
 were	
 crosschecked	
 with	
 Dr.	
 Kasper	

to	
 confirm	
 that	
 they	
 aligned	
 to	
 the	
 specifications.	
 The	
 TC1	
 seismometer	
 pushes	

values	
 into	
 the	
 serial	
 port	
 input	
 buffer	
 at	
 the	
 rate	
 of	
 18.76	
 values	
 per	
 second.	
 	
 I	

could	
 determine	
 the	
 size	
 of	
 the	
 input	
 buffer	
 by	
 using	
 the	
 serialPort.inWaiting()	

method	
 which	
 returns	
 the	
 number	
 of	
 characters	
 currently	
 in	
 the	
 input	
 buffer.	

The	
 input	
 buffer	
 can	
 hold	
 no	
 more	
 than	
 12290	
 characters,	
 which	
 means	
 no	
 more	

than	
 1755	
 values	
 sent	
 from	
 the	
 TC1	
 at	
 any	
 given	
 time.	
 After	
 the	
 input	
 buffer	
 is	

full	
 the	
 TC1	
 seismometer	
 is	
 unable	
 to	
 push	
 any	
 further	
 values	
 into	
 the	
 buffer	
 at	

which	
 stage	
 any	
 excess	
 values	
 are	
 dropped	
 until	
 space	
 is	
 created	
 in	
 the	
 buffer.	
 	

	

The	
 collecting	
 process	
 is	
 quite	
 efficient,	
 as	
 it	
 doesn’t	
 have	
 too	
 many	
 instructions	

to	
 process,	
 unlike	
 the	
 plotting	
 process	
 that	
 currently	
 handles	
 both	
 the	
 plotting,	

and	
 managing	
 the	
 live	
 plot	
 display	
 window.	
 However	
 as	
 we’ve	
 come	
 to	
 see,	
 the	

only	
 method	
 that	
 is	
 causing	
 all	
 the	
 problem	
 is	
 the	
 plot.draw()	
 method	
 in	
 the	

plotting	
 component	
 and	
 not	
 any	
 others.	

	

	
 	

PyjAmaseis

Serial Port Input Buffer

	

TC1 Seismometer

	
 Pipe

plot.draw()
Plotting Process

Collecting Process

	
 	
 	
 	
 	
 23	

The	
 pipe	
 that	
 connects	
 the	
 two	
 processes	
 can	
 hold	
 a	
 maximum	
 of	
 682	
 values	
 at	

once.	
 So	
 once	
 the	
 nature	
 of	
 this	
 system	
 was	
 understood,	
 it	
 made	
 it	
 easier	
 to	

unravel	
 how	
 the	
 whole	
 application	
 was	
 effected	
 due	
 to	
 the	
 inefficient	
 draw	

method.	
 The	
 following	
 bullet	
 points	
 try	
 to	
 convey	
 this	
 effect	
 on	
 the	
 application	
 in	

a	
 concise	
 manner:	

	

o Due	
 to	
 the	
 increasing	
 delay	
 caused	
 by	
 the	
 draw	
 method	
 that	
 sat	
 within	
 the	

plotting	
 process,	
 the	
 whole	
 process	
 became	
 slower	
 and	
 slower	
 as	
 the	
 time	

went	
 on.	

o Due	
 to	
 the	
 plotting	
 process	
 taking	
 more	
 time,	
 the	
 rate	
 at	
 which	
 it	
 reads	

values	
 from	
 the	
 Pipe	
 decreased	
 causing	
 values	
 in	
 the	
 Pipe	
 to	
 accumulate.	
 	

o This	
 in	
 turn	
 caused	
 the	
 pipe	
 to	
 become	
 full	
 and	
 remain	
 full	
 for	
 longer	

periods	
 of	
 time	
 until	
 the	
 slow	
 plotting	
 process	
 read	
 from	
 the	
 pipe	
 to	

create	
 space	
 for	
 more	
 values	
 to	
 be	
 sent	
 from	
 the	
 collecting	
 process.	

o I	
 learnt	
 that	
 the	
 pipe	
 method	
 calls	
 are	
 blocking	
 method	
 calls	
 meaning	
 if	

you	
 try	
 to	
 push	
 a	
 value	
 on	
 to	
 a	
 pipe	
 that	
 is	
 full,	
 the	
 process	
 would	
 wait	

there	
 without	
 executing	
 any	
 other	
 code	
 until	
 there	
 is	
 space	
 on	
 the	
 pipe	
 to	

push	
 the	
 value,	
 and	
 likewise	
 if	
 a	
 process	
 reads	
 from	
 an	
 empty	
 pipe	
 it	
 will	

get	
 stuck	
 in	
 that	
 method	
 call	
 until	
 it	
 receives	
 a	
 value	
 from	
 the	
 pipe.	
 This	

causes	
 the	
 processes	
 to	
 block	
 further	
 execution	
 whenever	
 these	
 two	

conditions	
 take	
 place.	

	

Action	
 Pipe	
 Condition	
 Result	

	

Process	
 tries	
 to	
 read	

from	
 pipe	

	

Pipe	
 empty	

Process	
 waits	
 till	
 it	

receives	
 a	
 value	

Process	
 tries	
 to	
 push	

value	
 onto	
 pipe	

Pipe	
 full	

	

Process	
 wait	
 till	
 there	

is	
 space	
 on	
 pipe	
 to	

push	
 value	

	

	

o Due	
 to	
 this	
 nature	
 of	
 a	
 Pipe,	
 when	
 the	
 collecting	
 process	
 fills	
 up	
 the	
 pipe	

faster	
 than	
 the	
 plotting	
 process	
 reads	
 them,	
 the	
 collecting	
 process	
 waits	

and	
 blocks	
 till	
 it	
 can	
 push	
 more	
 values	
 on	
 to	
 the	
 pipe.	

o This	
 wait	
 that	
 the	
 collecting	
 process	
 does,	
 causes	
 the	
 serial	
 port	
 input	

buffer	
 to	
 fill	
 up	
 as	
 more	
 and	
 more	
 values	
 are	
 being	
 placed	
 in	
 it	
 while	
 they	

are	
 not	
 being	
 read	
 fast	
 enough	
 by	
 the	
 collecting	
 process	
 causing	
 a	

bottleneck	
 situation	
 in	
 the	
 application.	
 	

o Thus	
 the	
 delay	
 starts	
 of	
 small	
 but	
 gets	
 worse	
 and	
 worse	
 and	
 the	
 rate	
 at	

which	
 the	
 plotting	
 component	
 reads	
 the	
 pipe	
 decreases.	

	

	
 	
 	
 	
 	
 24	

Thus	
 after	
 understanding	
 the	
 whole	
 situation,	
 I	
 looked	
 into	
 a	
 way	
 of	
 replacing	

Matplotlib’s	
 draw	
 method	
 with	
 something	
 that	
 was	
 more	
 efficient.	
 Upon	
 doing	
 a	

bit	
 of	
 research	
 I	
 came	
 across	
 a	
 rendering	
 technique	
 generally	
 used	
 in	
 gaming	

known	
 as	
 Blitting.	
 To	
 "blit"	
 is	
 to	
 copy	
 bits	
 from	
 one	
 part	
 of	
 a	
 computer's	

graphical	
 memory	
 to	
 another	
 part.	
 This	
 technique	
 deals	
 directly	
 with	
 the	
 pixels	

of	
 an	
 image,	
 and	
 draws	
 them	
 directly	
 to	
 the	
 screen,	
 which	
 makes	
 it	
 a	
 very	
 fast	

rendering	
 technique	
 that's	
 often	
 used	
 in	
 fast-­‐paced	
 2D	
 action	
 games	
 (gaming).	

Therefore	
 I	
 tried	
 and	
 successfully	
 implemented	
 the	
 use	
 of	
 Blitting	
 in	
 PyjAmaseis	

where	
 after	
 plotting	
 an	
 array	
 of	
 values	
 I	
 blit	
 the	
 figure	
 and	
 draw	
 the	
 new	
 values	

on	
 top	
 of	
 the	
 currently	
 blitted	
 figure	
 and	
 repeat	
 the	
 process.	
 Thus	
 the	
 plot	
 is	
 only	

drawing	
 the	
 values	
 sent	
 to	
 it	
 and	
 the	
 old	
 values	
 do	
 not	
 exist	
 in	
 any	
 array,	
 but	
 they	

do	
 as	
 a	
 blitted	
 image	
 of	
 the	
 figure.	
 To	
 my	
 astonishment,	
 with	
 the	
 help	
 of	
 blitting	

the	
 rate	
 at	
 which	
 the	
 figure	
 draws	
 the	
 new	
 values	
 and	
 blits	
 the	
 figure	
 together	

come	
 to	
 about	
 0.032	
 seconds	
 which	
 is	
 roughly	
 12.2	
 times	
 faster	
 than	
 what	
 the	

plotting	
 process	
 took	
 earlier	
 to	
 achieve	
 the	
 same	
 result.	
 This	
 value	
 was	
 again	

calculated	
 using	
 the	
 timestamp	
 method	
 explained	
 earlier.	
 Thus	
 I	
 successfully	

completed	
 the	
 plotting	
 component	
 of	
 the	
 application.	
 The	
 sub-­‐second	
 precision	

with	
 which	
 the	
 application	
 now	
 plots	
 has	
 seismological	
 significance	
 and	
 will	
 be	

further	
 explained	
 in	
 the	
 results	
 section.	
 Upon	
 receiving	
 a	
 request	
 from	
 Dr.	

Kasper,	
 I	
 reverted	
 back	
 to	
 a	
 multi-­‐threaded	
 architecture	
 using	
 queues,	
 as	

opposed	
 to	
 a	
 multi-­‐processing	
 architecture	
 using	
 pipes.	
 I	
 did	
 not	
 notice	
 any	

delays	
 or	
 lags	
 in	
 the	
 multi-­‐threaded	
 architecture	
 after	
 the	
 use	
 of	
 blitting.	

4.3	
 Saving	

The	
 saving	
 component	
 of	
 PyjAmaseis	
 is	
 responsible	
 for	
 saving	
 hour-­‐long	
 mseed	

files.	
 MSEED	
 is	
 a	
 seismology	
 file	
 format	
 where	
 SEED	
 stands	
 for	
 Standard	
 for	

Exchanging	
 Earthquake	
 Data	
 and	
 MSEED	
 stands	
 for	
 mini	
 SEED.	
 The	
 process	
 for	

saving	
 mseed	
 files	
 is	
 quite	
 simple	
 with	
 the	
 help	
 of	
 ObsPy,	
 which	
 is	
 one	
 of	
 the	

main	
 reasons	
 for	
 choosing	
 to	
 develop	
 this	
 application	
 in	
 Python.	
 The	
 write	

module	
 in	
 the	
 ObsPy	
 framework	
 allows	
 us	
 to	
 export	
 the	
 data	
 collected	
 into	

seismology	
 file	
 formats	
 very	
 easily	
 and	
 efficiently.	
 The	
 process	
 of	
 saving	
 these	

files	
 is	
 to	
 create	
 a	
 trace	
 object	
 that	
 contains	
 all	
 the	
 data	
 collected	
 from	
 the	
 TC1	

seismometer	
 and	
 then	
 writing	
 this	
 trace	
 along	
 with	
 header	
 information	
 into	
 an	

mseed	
 file.	

	

In	
 the	
 process	
 of	
 creating	
 header	
 information,	
 I	
 came	
 to	
 notice	
 the	
 headers	
 that	

are	
 required	
 to	
 store	
 the	
 station	
 location,	
 station	
 ID	
 and	
 station	
 geo	
 coordinates,	

were	
 missing	
 in	
 the	
 list	
 of	
 available	
 headers	
 in	
 the	
 MSEED	
 file	
 format.	
 Upon	

raising	
 this	
 issue	
 with	
 Dr.	
 Kasper,	
 he	
 recommended	
 me	
 to	
 save	
 the	
 files	
 into	
 a	

SAC	
 format.	
 SAC	
 stands	
 for	
 Seismic	
 Analysis	
 Code	
 and	
 is	
 equivalent	
 to	
 SEED.	
 	

With	
 the	
 required	
 headers	
 available	
 in	
 SAC	
 I	
 saved	
 the	
 header	
 information	
 and	

the	
 hour-­‐long	
 seismic	
 data	
 into	
 trace	
 object	
 and	
 placed	
 that	
 within	
 a	
 Stream	

object	
 before	
 writing	
 the	
 stream	
 into	
 a	
 SAC	
 file.	
 A	
 trace	
 contains	
 hour-­‐long	

seismic	
 data	
 while	
 a	
 stream	
 object	
 can	
 contain	
 several	
 trace	
 objects.	
 Figure	
 21	

	
 	
 	
 	
 	
 25	

presents	
 the	
 code	
 that	
 saves	
 the	
 header	
 information	
 and	
 array	
 of	
 seismic	
 data	

into	
 a	
 trace,	
 which	
 is	
 then	
 placed	
 in	
 a	
 Stream	
 object	
 before	
 being	
 written	
 into	
 a	

SAC	
 file.	
 	

	

	

Figure	
 21	
 Creating	
 a	
 trace	
 object,	
 placing	
 it	
 in	
 a	
 Stream	
 and	
 saving	
 the	
 stream	
 as	
 a	
 .SAC	
 file	

	

This	
 component	
 of	
 PyjAmaseis	
 is	
 also	
 responsible	
 for	
 saving	
 Screenshots	
 of	
 the	

plot	
 at	
 regular	
 intervals.	
 According	
 to	
 the	
 initial	
 specification,	
 the	
 SAC	
 and	

Screenshots	
 needed	
 to	
 be	
 saved	
 at	
 least	
 once	
 every	
 hour.	
 There	
 were	
 several	

options	
 available	
 for	
 capturing	
 the	
 window	
 screenshot	
 in	
 Python.	
 I	
 chose	
 to	
 use	

the	
 PIL	
 module	
 that	
 contained	
 the	
 Image	
 grab	
 class	
 that	
 could	
 take	
 and	
 save	

screenshots	
 in	
 PNG	
 file	
 format.	
 PIL	
 stands	
 for	
 Python	
 Imaging	
 Library.	
 These	

files	
 were	
 saved	
 in	
 the	
 same	
 directory	
 the	
 script	
 was	
 running	
 from.	
 The	
 following	

line	
 of	
 code	
 carries	
 out	
 the	
 screen	
 capture.	

	

	

4.4	
 Sharing	

This	
 component	
 of	
 the	
 PyjAmaseis	
 application	
 focuses	
 on	
 providing	
 the	

capability	
 of	
 uploading	
 the	
 SAC	
 and	
 screenshots	
 saved	
 by	
 the	
 application	
 to	
 the	

NZSeis	
 central	
 server.	
 The	
 aim	
 behind	
 this	
 functionality	
 is	
 to	
 create	
 a	
 network	
 of	

schools	
 that	
 can	
 share	
 the	
 seismic	
 data	
 that	
 is	
 collected	
 at	
 their	
 school	
 with	
 other	

schools	
 around	
 the	
 country.	
 	

	

I	
 worked	
 alongside	
 Matiu	
 (Mat)	
 Carr	
 from	
 the	
 ScienceIT	
 department	
 at	

University	
 of	
 Auckland	
 in	
 order	
 to	
 successfully	
 achieve	
 the	
 implementation	
 of	

this	
 component.	
 	

	

Mat	
 recommended	
 I	
 look	
 into	
 using	
 PycURL	
 to	
 create	
 HTTPS	
 requests	
 to	
 upload	

the	
 data	
 to	
 a	
 server	
 hosted	
 by	
 the	
 ScienceIT	
 called	
 NZSeis.	
 PycURL	
 is	
 a	
 Python	

interface	
 to	
 Libcurl.	
 Libcurl	
 is	
 a	
 client-­‐side	
 URL	
 transfer	
 library	
 supporting	
 a	

large	
 number	
 of	
 protocols	
 such	
 as	
 HTTP,	
 HTTPS,	
 IMAP	
 and	
 SMTPS.	
 Libcurl	
 also	

supports	
 SSL	
 certificates,	
 HTTP	
 form	
 based	
 uploading,	
 username	
 and	
 password	

authentication	
 along	
 with	
 many	
 other	
 things.	

	

It	
 took	
 me	
 some	
 time,	
 but	
 writing	
 the	
 code	
 to	
 upload	
 the	
 saved	
 sac	
 file	
 or	
 image	

was	
 relatively	
 easy	
 with	
 PycURL.	
 The	
 code	
 snippet	
 in	
 figure	
 23	
 demonstrates	
 this	

process.	

	

Figure	
 22	
 Line	
 of	
 code	
 takes	
 screen	
 shot	
 of	
 the	
 plotting	
 window	

	
 	
 	
 	
 	
 26	

	

Figure	
 23	
 This	
 code	
 creates	
 a	
 multipart	
 form	
 encoded	
 HTTP	
 Post	
 request	
 to	
 upload	
 a	
 SAC	
 file	

In	
 order	
 to	
 upload	
 a	
 SAC	
 file	
 I	
 generated	
 a	
 HTTP	
 Post	
 request	
 with	
 PycURL	
 and	

supplied	
 the	
 required	
 URL	
 location	
 of	
 the	
 NZSeis	
 server,	
 authentication	
 header	

information,	
 and	
 the	
 SAC	
 file	
 itself.	
 Here	
 in	
 the	
 last	
 line	
 I	
 created	
 a	
 multipart	
 form	

encoding	
 in	
 order	
 to	
 pass	
 the	
 sac	
 file	
 to	
 the	
 right	
 component	
 of	
 the	
 php	
 script	

running	
 on	
 the	
 server	
 side.	
 The	
 content	
 type	
 for	
 a	
 sac	
 file	
 is	
 “application/octet-­‐
stream”	
 where	
 as	
 for	
 the	
 screenshots;	
 the	
 content	
 type	
 needs	
 to	
 be	
 changed	
 to	

“image/png”.	
 The	
 “mode”	
 in	
 the	
 multipart	
 form	
 encoding	
 also	
 needs	
 to	
 be	
 change	

to	
 “image”	
 instead	
 of	
 “sac”	
 when	
 uploading	
 image	
 files.	
 ScienceIT	
 supplies	
 the	

credentials	
 required	
 in	
 the	
 authorization	
 header	
 to	
 each	
 individual	
 school.	
 These	

are	
 custom	
 generated	
 to	
 prevent	
 any	
 random	
 user	
 posting	
 data	
 to	
 that	
 address.	

In	
 this	
 example,	
 “kofi”	
 stands	
 for	
 “Kasper’s	
 Office”.	

	

The	
 Apache	
 Server	
 has	
 been	
 configured	
 to	
 authenticate	
 the	
 request	
 sent	
 to	
 that	

location	
 prior	
 to	
 the	
 handling	
 of	
 the	
 payload.	
 Mat	
 has	
 written	
 a	
 php	
 script	
 on	
 the	

server	
 side	
 that	
 checks	
 the	
 content	
 type	
 and	
 payload	
 to	
 confirm	
 that	
 it	
 is	
 a	
 SAC	

file	
 or	
 an	
 image	
 file.	
 Upon	
 confirmation,	
 the	
 php	
 script	
 archives	
 this	
 file	
 in	
 a	
 file	

structure	
 that	
 is	
 kept	
 for	
 back	
 up	
 and	
 saves	
 another	
 copy	
 on	
 a	
 public	
 domain	
 that	

can	
 be	
 seen	
 on	
 the	
 internet	
 by	
 other	
 schools.	
 Currently	
 there	
 are	
 a	
 lot	
 more	

security	
 concerns	
 that	
 need	
 to	
 be	
 addressed	
 before	
 we	
 can	
 make	
 the	
 data	

publicly	
 available	
 on	
 the	
 internet,	
 but	
 the	
 aim	
 is	
 to	
 allow	
 these	
 files	
 to	
 be	
 seen	
 on	

the	
 ru.auckland.ac.nz	
 website	
 which	
 is	
 the	
 Seismometer	
 in	
 Schools	
 Programme	

website	
 running	
 in	
 New	
 Zealand	
 headed	
 by	
 Dr.	
 Kasper.	

4.5	
 Additional	
 Features	

	

Along	
 with	
 completing	
 the	
 core	
 functionality	
 I	
 looked	
 into	
 implementing	

additional	
 functionality	
 that	
 supports	
 the	
 aim	
 of	
 PyjAmaseis	
 and	
 the	
 end	
 user.	

4.5.1	
 TC1	
 Plug	
 &	
 Play	

	

The	
 first	
 of	
 these	
 is	
 the	
 Plug	
 &	
 Play	
 feature.	
 For	
 those	
 who	
 have	
 used	
 software	

such	
 as	
 jAmaseis	
 or	
 Amaseis,	
 they	
 are	
 aware	
 of	
 the	
 difficulty	
 in	
 having	
 to	
 look	
 up	

the	
 exact	
 port	
 name	
 the	
 TC1	
 seismometer	
 is	
 connected	
 to	
 in	
 device	
 manager	
 and	

select	
 it	
 from	
 a	
 list	
 of	
 COM	
 ports	
 before	
 they	
 can	
 begin	
 engaging	
 with	
 the	

software.	
 With	
 teachers	
 and	
 students	
 in	
 mind,	
 I	
 knew	
 that	
 this	
 would	
 be	
 a	

difficult	
 task	
 for	
 them,	
 and	
 so	
 I	
 looked	
 into	
 a	
 way	
 of	
 removing	
 this	
 requirement	
 of	

knowing	
 or	
 searching	
 for	
 the	
 COM	
 port.	
 Therefore	
 an	
 end	
 user	
 can	
 directly	

connect	
 the	
 TC1	
 to	
 any	
 port	
 and	
 run	
 PyjAmaseis	
 without	
 having	
 to	
 know	
 or	
 do	

any	
 prior	
 configuration	
 to	
 begin	
 the	
 plotting	
 session.	
 This	
 feature	
 works	
 on	
 all	

platforms.	

	
 	
 	
 	
 	
 27	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	
 way	
 I	
 carried	
 this	
 out	
 was	
 to	
 inspect	
 the	
 properties	
 of	
 the	
 port	
 the	
 TC1	

seismometer	
 is	
 connected	
 to,	
 and	
 with	
 the	
 help	
 of	
 PySerial,	
 I	
 had	
 placed	
 several	

checks	
 in	
 place	
 that	
 check	
 for	
 pre-­‐determined	
 port	
 properties	
 such	
 as	
 baudrate,	

parity,	
 timeout,	
 and	
 xonxoff	
 and	
 then	
 select	
 that	
 port	
 as	
 the	
 port	
 that	
 the	
 TC1	

seismometer	
 was	
 connected	
 to.	
 Before	
 this	
 check	
 takes	
 place	
 though,	
 there	
 are	

OS	
 calls	
 that	
 are	
 made	
 which	
 return	
 the	
 list	
 of	
 all	
 active	
 ports	
 then	
 the	
 above-­‐
mentioned	
 check	
 takes	
 place	
 before	
 finalizing	
 the	
 port.	
 This	
 functionality	
 has	

been	
 tested	
 and	
 has	
 proven	
 to	
 successfully	
 work	
 on	
 all	
 operating	
 systems	
 and	

even	
 when	
 other	
 USB	
 devices	
 are	
 connected.	
 	

	

	

Figure	
 25	
 The	
 serial_ports()	
 responsible	
 for	
 returning	
 all	
 the	
 currently	
 active	
 USB	
 ports	

	

Figure	
 24	
 jAmaseis	
 window	
 showing	
 the	
 requirement	
 of	

Device	
 port	
 selection	

	
 	
 	
 	
 	
 28	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

4.5.2	
 User	
 Interface	

In	
 order	
 to	
 collect	
 the	
 station	
 information	
 I	
 needed	
 to	
 create	
 a	
 UI	
 that	
 allows	
 the	

user	
 to	
 enter	
 their	
 station	
 name	
 and	
 address.	
 I	
 carried	
 this	
 out	
 by	
 creating	
 an	

interface	
 using	
 wxPython,	
 which	
 is	
 a	
 wrapper	
 for	
 the	
 cross-­‐platform	
 GUI	

wxWidgets	
 (which	
 is	
 written	
 in	
 C++)	
 for	
 the	
 Python	
 programming	
 language.	
 Due	

to	
 the	
 short	
 amount	
 of	
 time	
 I	
 had	
 left	
 near	
 the	
 end	
 of	
 the	
 project,	
 I	
 looked	
 for	
 a	

quicker	
 way	
 to	
 develop	
 this	
 interface.	
 My	
 search	
 led	
 me	
 to	
 WxGlade,	
 which	
 is	
 a	

WYSIWYG	
 (What	
 you	
 see	
 is	
 what	
 you	
 get)	
 GUI	
 designer	
 that	
 helps	
 create	

wxWidgets/wxPython	
 user	
 interfaces.	
 The	
 use	
 of	
 WxGlade	
 was	
 a	
 valuable	

decision	
 as	
 it	
 allowed	
 me	
 to	
 quickly	
 develop	
 the	
 interface	
 I	
 needed	
 without	

having	
 to	
 write	
 any	
 wxPython	
 code.	
 The	
 information	
 entered	
 in	
 the	
 text	
 fields	
 is	

saved	
 locally	
 in	
 a	
 txt	
 file	
 and	
 is	
 accessed	
 every	
 time	
 the	
 application	
 is	
 launched	
 to	

retrieve	
 the	
 saved	
 information.	
 This	
 retrieved	
 information	
 will	
 be	
 used	
 when	

creating	
 header	
 information	
 for	
 the	
 SAC	
 files.	
 	

	

Figure	
 26	
 This	
 method	
 checks	
 each	
 active	
 USB	
 port	
 to	
 see	
 if	
 it’s	
 the	
 TC1	
 connected	
 to	
 it	

	
 	
 	
 	
 	
 29	

	

Figure	
 27	
 PyjAmaseis	
 initial	
 UI	
 window	

	

	

4.5.3	
 Real-­‐time	
 Geo-­‐location	
 Querying	

A	
 suggestion	
 that	
 came	
 through	
 in	
 my	
 mid	
 semester	
 presentation	
 from	
 my	
 BTech	

IT	
 coordinator	
 Dr.	
 Manoharan,	
 was	
 the	
 possibility	
 of	
 looking	
 into	
 a	
 way	
 to	
 auto	

generate	
 the	
 longitude	
 and	
 latitude	
 fields	
 required	
 for	
 header	
 information.	
 This	

requirement	
 is	
 understandable	
 as	
 many	
 users	
 especially	
 teachers	
 and	
 students	

would	
 not	
 know	
 these	
 values	
 and	
 would	
 have	
 to	
 manually	
 search	
 the	
 Internet	
 to	

know	
 what	
 the	
 geo	
 coordinates	
 of	
 their	
 location	
 are.	
 To	
 save	
 them	
 the	
 trouble	
 I	

implemented	
 a	
 feature	
 with	
 the	
 help	
 of	
 a	
 module	
 named	
 Pygeocoder,	
 which	

allows	
 any	
 address	
 written	
 in	
 the	
 “Street	
 Address”	
 text	
 field	
 of	
 the	
 UI	
 will	

automatically	
 make	
 a	
 call	
 to	
 get	
 the	
 exact	
 geo-­‐coordinates.	
 This	
 call	
 is	
 made	
 after	

each	
 character	
 is	
 typed	
 so	
 by	
 the	
 end	
 of	
 it,	
 the	
 user	
 will	
 have	
 the	
 exact	
 geo	

coordinates	
 for	
 the	
 street	
 address	
 they	
 have	
 entered.	
 These	
 retrieved	

geocoordinates	
 will	
 populate	
 their	
 respective	
 text	
 fields	
 providing	
 real-­‐time	

feedback	
 to	
 the	
 user.	
 	

	

	

	

	

	

	

	

	

	

4.5.4	
 Y	
 Plot	
 Shift	

The	
 necessity	
 for	
 this	
 functionality	
 arose	
 when	
 one	
 of	
 the	
 TC1	
 seismometers	
 I	

was	
 using	
 was	
 not	
 calibrated	
 correctly	
 and	
 so	
 its	
 mode	
 or	
 resting	
 value	
 didn’t	

Figure	
 28	
 GeoCoder	
 returns	
 the	
 Longitude,	
 Latitude	
 and	
 Elevation	
 of	
 the	

Street	
 address	
 entered	

	
 	
 	
 	
 	
 30	

match	
 the	
 default	
 value	
 of	
 32750	
 that	
 I	
 was	
 using	
 for	
 plotting.	
 It	
 was	
 slightly	

higher	
 so	
 the	
 whole	
 plot	
 was	
 offset	
 by	
 an	
 arbitrary	
 value.	
 Inorder	
 to	
 correct	
 this,	

I	
 provided	
 the	
 user	
 with	
 a	
 simple	
 Graph	
 Shift	
 option	
 in	
 the	
 secondary	
 options	

window	
 that	
 they	
 can	
 use	
 to	
 make	
 incremental	
 changes	
 in	
 shifting	
 the	
 plot	
 on	
 the	

Y	
 axis.	
 I	
 understood	
 that	
 if	
 such	
 caliberation	
 was	
 required	
 then	
 everytime	
 the	

aplication	
 was	
 loaded	
 the	
 user	
 would	
 have	
 to	
 manually	
 configure	
 this.	
 Hence	
 I	

developed	
 it	
 such	
 that	
 everytime	
 the	
 caliberation	
 is	
 made	
 this	
 setting	
 would	
 be	

saved	
 locally	
 in	
 the	
 text	
 file	
 and	
 when	
 the	
 application	
 is	
 loaded	
 the	
 right	

configured	
 plot	
 would	
 be	
 displayed.	

	

	

	

Figure	
 29	
 PyjAmaseis	
 Options	
 window	

	

	

4.5.5	
 1	
 Hour	
 Plot	
 	

The	
 last	
 functionality	
 I	
 implemented	
 was	
 the	
 1-­‐hour	
 plot	
 as	
 opposed	
 to	
 the	

default	
 24-­‐hour	
 plot.	
 This	
 was	
 an	
 important	
 functionality	
 to	
 implement	
 because	

in	
 the	
 24-­‐hour	
 plot	
 we	
 can	
 hardly	
 see	
 the	
 nature	
 of	
 the	
 seismic	
 waves	
 that	
 were	

being	
 recorded	
 by	
 the	
 TC1	
 seismometer.	
 However	
 with	
 the	
 1-­‐hour	
 plot,	
 which	

plots	
 5-­‐minute	
 sections,	
 we	
 can	
 clearly	
 see	
 the	
 nature	
 of	
 this	
 seismic	
 activity.	
 I	

followed	
 the	
 same	
 plotting	
 procedure	
 as	
 I	
 did	
 for	
 plotting	
 a	
 24-­‐hour	
 plot	
 except	
 it	

was	
 developed	
 for	
 one	
 hour.	
 	
 The	
 user	
 has	
 the	
 option	
 to	
 shift	
 between	
 the	
 24-­‐
hour	
 plot	
 and	
 1-­‐hour	
 plot	
 at	
 will	
 without	
 any	
 problems.	
 The	
 one-­‐hour	
 plot	
 is	
 a	

very	
 important	
 feature	
 because	
 when	
 a	
 teacher	
 is	
 teaching	
 seismology	
 in	
 a	

classroom	
 a	
 24	
 hour	
 plot	
 will	
 not	
 be	
 a	
 very	
 good	
 representative	
 plot	
 to	
 show	
 the	

slight	
 modulations	
 created	
 when	
 walking	
 or	
 jumping	
 near	
 the	
 TC1	
 seismometer.	

However	
 with	
 a	
 1-­‐hour	
 plot	
 this	
 can	
 be	
 clearly	
 seen	
 and	
 so	
 it	
 serves	
 as	
 a	
 better	

visual	
 representation	
 for	
 demonstrating	
 seismic	
 activity.	

	

	
 	
 	
 	
 	
 31	

	

Figure	
 30	
 PyjAmaseis	
 1	
 hour	
 plot	

5.	
 Results	
 	

	

Through	
 out	
 the	
 course	
 of	
 the	
 development	
 of	
 PyjAmaseis,	
 I	
 encountered	

numerous	
 problems	
 and	
 challenges,	
 which	
 I	
 have	
 already	
 covered	
 in	
 the	

implementation	
 section	
 of	
 this	
 report.	
 In	
 this	
 section	
 I	
 would	
 like	
 to	
 emphasize	

the	
 outcome	
 of	
 the	
 implementation	
 and	
 problems	
 I	
 addressed,	
 and	
 the	

significance	
 the	
 solutions	
 bring	
 to	
 the	
 end	
 users	
 such	
 as	
 teachers,	
 students	
 and	

seismologists.	

	

The	
 outcome	
 of	
 successfully	
 addressing	
 issues	
 such	
 as	
 the	
 distortion	
 of	
 the	
 plot,	

delay	
 and	
 lag	
 issues	
 in	
 the	
 plotting	
 component	
 and	
 the	
 use	
 of	
 a	
 single	
 subplot	
 vs	

24	
 individual	
 subplots	
 all	
 contribute	
 to	
 creating	
 a	
 robust	
 and	
 accurate	
 live	

plotting	
 component.	
 Plotting	
 is	
 the	
 most	
 important	
 functionality	
 out	
 of	
 all	

(collecting,	
 plotting,	
 saving	
 and	
 sharing)	
 because	
 when	
 teaching	
 students	
 about	

seismology	
 they	
 need	
 to	
 be	
 able	
 to	
 engage	
 with	
 the	
 seismometer	
 and	
 see	
 the	

immediate	
 responses	
 to	
 their	
 interactions.	
 The	
 plotting	
 component	
 needs	
 to	
 be	

accurate	
 and	
 responsive	
 to	
 engage	
 the	
 students	
 and	
 provide	
 them	
 with	
 another	

interactive	
 way	
 of	
 learning	
 about	
 seismology.	
 	
 Learning	
 to	
 use	
 Blitting	
 was	
 a	

crucial	
 turning	
 point	
 in	
 the	
 development	
 of	
 the	
 application	
 as	
 having	
 to	
 look	
 into	

another	
 plotting	
 library	
 would	
 have	
 cost	
 me	
 a	
 lot	
 of	
 time.	
 This	
 could	
 have	

hindered	
 me	
 from	
 completing	
 all	
 the	
 functionality	
 that	
 was	
 laid	
 out	
 in	
 the	

beginning	
 of	
 the	
 project.	
 Therefore	
 learning	
 about	
 Blitting	
 turned	
 out	
 to	
 be	
 a	

timely	
 discovery,	
 which	
 I	
 also	
 happened	
 to	
 implement	
 in	
 a	
 short	
 amount	
 of	
 time.	

The	
 significance	
 of	
 being	
 able	
 to	
 use	
 the	
 blitting	
 technique	
 in	
 the	
 plotting	

component	
 is	
 a	
 tremendous	
 plus	
 point	
 because	
 the	
 Matplotlib	
 draw()	
 method	

was	
 very	
 inefficient	
 and	
 also	
 was	
 not	
 fit	
 for	
 being	
 used	
 in	
 a	
 live	
 plotting	
 situation.	

The	
 time	
 difference	
 is	
 astounding	
 when	
 comparing	
 the	
 draw	
 method	
 vs	
 using	
 the	

	
 	
 	
 	
 	
 32	

blitting	
 technique	
 in	
 a	
 live	
 plotting	
 scenario,	
 with	
 blitting	
 being	
 12.2	
 times	
 faster	

than	
 the	
 draw	
 method,	
 executing	
 in	
 only	
 0.032	
 seconds	
 every	
 time.	

	

This	
 technique	
 comes	
 as	
 a	
 significant	
 break	
 through	
 in	
 the	
 field	
 of	
 live	
 plotting	

applications	
 for	
 seismology	
 because	
 even	
 the	
 currently	
 used	
 applications	
 such	
 as	

jAmaseis	
 show	
 signs	
 of	
 noticeable	
 latency	
 issues.	
 Thus	
 PyjAmaseis	
 would	
 serve	

potentially	
 as	
 the	
 first	
 application	
 that	
 does	
 live	
 plotting	
 to	
 sub-­‐second	
 precision.	

When	
 discussing	
 this	
 with	
 Dr.	
 Kasper	
 he	
 explained	
 how	
 Seismologists	

understand	
 the	
 internal	
 structure	
 of	
 the	
 earth	
 and	
 why	
 sub-­‐second	
 precision	
 is	

so	
 critical.	
 Professional	
 seismologists	
 measure	
 the	
 time	
 taken	
 for	
 an	
 earthquake	

to	
 travel	
 from	
 one	
 location	
 to	
 another.	
 This	
 time	
 is	
 measured	
 using	
 live	
 plotting	

mechanisms	
 such	
 as	
 seismometers.	
 While	
 analog	
 seismometers	
 can	
 accurately	

indicate	
 exactly	
 when	
 it	
 experiences	
 an	
 earthquake,	
 digital	
 plotting	
 has	
 seen	

latency	
 issues	
 thus	
 affecting	
 the	
 accuracy	
 of	
 the	
 measurement.	
 The	
 time	
 taken	

serves	
 as	
 an	
 indicator	
 as	
 to	
 what	
 lies	
 underneath	
 the	
 crust	
 of	
 the	
 earth.	
 Suppose	

an	
 earthquake	
 takes	
 a	
 few	
 seconds	
 longer	
 than	
 it	
 was	
 expected,	
 then	
 the	

seismologists	
 would	
 conclude	
 there	
 is	
 some	
 extra	
 material	
 in	
 between	
 that	
 is	

responsible	
 for	
 causing	
 this	
 delay.	
 Thus	
 by	
 taking	
 thousands	
 of	
 these	
 sample	

measurements	
 over	
 decades,	
 seismologists	
 attempt	
 to	
 understand	
 the	
 internal	

structure	
 of	
 the	
 earth.	
 Hence	
 sub-­‐second	
 plotting	
 is	
 so	
 crucial	
 as	
 it	
 affects	
 the	

way	
 professional	
 seismologists	
 understand	
 the	
 earth’s	
 internal	
 structure.	

Therefore	
 I	
 can	
 proudly	
 say	
 that	
 PyjAmaseis	
 successfully	
 addresses	
 the	
 latency	

issues	
 of	
 previous	
 seismology	
 live	
 plotting	
 applications	
 and	
 can	
 successfully	
 be	

used	
 by	
 professional	
 seismologists	
 around	
 the	
 world.	

	

By	
 implementing	
 the	
 additional	
 features	
 my	
 aim	
 was	
 to	
 remove	
 some	
 of	
 the	

known	
 problems	
 with	
 seismology	
 applications	
 such	
 as	
 jAmaseis,	
 and	
 present	

students	
 with	
 more	
 engaging	
 features	
 allowing	
 them	
 to	
 learn	
 more	
 about	

seismology.	
 Some	
 of	
 the	
 cumbersome	
 functionality	
 in	
 jAmaseis	
 such	
 as	
 -­‐	
 knowing	

which	
 USB	
 port	
 the	
 seismometer	
 is	
 connected	
 to,	
 and	
 knowing	
 the	
 exact	
 geo	

location	
 coordinates	
 of	
 their	
 address	
 -­‐	
 are	
 simplified	
 and	
 automated	
 in	

PyjAmaseis	
 so	
 that	
 teachers	
 and	
 students	
 do	
 not	
 need	
 to	
 worry	
 about	
 these	

things	
 and	
 can	
 focus	
 on	
 what	
 is	
 most	
 important	
 which	
 is	
 engaging	
 in	
 the	
 live	

plotting,	
 saving	
 and	
 sharing	
 of	
 seismic	
 data.	
 The	
 1-­‐hour	
 plot	
 allows	
 the	
 user	
 to	

experience	
 the	
 high	
 resolution	
 with	
 which	
 the	
 TC1	
 seismometer	
 captures	

seismic	
 activity.	
 Viewing	
 the	
 1-­‐hour	
 plot	
 is	
 a	
 more	
 engaging	
 experience	
 as	
 it	

shows	
 clearly	
 any	
 subtle	
 seismic	
 activity	
 that	
 cannot	
 be	
 seen	
 in	
 a	
 24-­‐hour	
 plot.	

	

The	
 current	
 version	
 of	
 PyjAmaseis	
 allows	
 schools	
 to	
 incorporate	
 it	
 into	
 their	

curriculum	
 and	
 automatically	
 have	
 their	
 SAC	
 files	
 and	
 screenshots	
 uploaded	
 to	

the	
 NZSeis	
 server.	
 It	
 is	
 only	
 a	
 matter	
 of	
 time	
 before	
 the	
 network	
 is	
 live	
 and	
 every	

school	
 gets	
 access	
 to	
 every	
 other	
 school’s	
 data	
 to	
 compare	
 and	
 learn	
 from.	
 	

	
 	
 	
 	
 	
 33	

6.	
 Evaluation	

	

Although	
 PyjAmaseis	
 was	
 not	
 tested	
 in	
 a	
 classroom	
 environment,	
 over	
 the	

course	
 of	
 development,	
 all	
 of	
 the	
 issues	
 have	
 been	
 addressed	
 and	
 checks	
 are	
 in	

place	
 to	
 ensure	
 that	
 the	
 application	
 is	
 not	
 only	
 robust	
 but	
 also	
 simple	
 and	
 user	

friendly.	
 This	
 was	
 part	
 of	
 the	
 specification	
 and	
 has	
 been	
 successfully	

implemented	
 along	
 with	
 the	
 core	
 functionality	
 to	
 create	
 a	
 new	
 -­‐	
 more	
 engaging	

software	
 for	
 educational	
 seismology.	
 PyjAmaseis	
 meets	
 all	
 the	
 requirements	

stated	
 at	
 the	
 beginning	
 of	
 the	
 project.	
 	

	

My	
 contribution	
 to	
 this	
 project	
 is	
 not	
 just	
 the	
 purposeful	
 application	
 that	
 I	
 have	

built	
 but	
 the	
 solutions	
 to	
 the	
 challenges	
 faced,	
 bring	
 to	
 light	
 some	
 very	
 useful	

techniques	
 that	
 enhance	
 the	
 live	
 plotting	
 component	
 of	
 seismology	
 applications.	

I	
 have	
 also	
 introduced	
 several	
 features	
 that	
 simplify	
 and	
 automate	
 some	
 of	
 the	

technical	
 features	
 present	
 in	
 the	
 previous	
 seismology	
 software	
 such	
 as	
 jAmaseis,	

where	
 users	
 can	
 now	
 work	
 with	
 a	
 simple	
 user	
 interface	
 and	
 can	
 easily	
 access	
 the	

different	
 options	
 available	
 without	
 any	
 difficulty	
 or	
 complexity.	

	

Over	
 the	
 course	
 of	
 the	
 project	
 there	
 were	
 a	
 number	
 of	
 things	
 that	
 I	
 had	
 learnt.	

Understanding	
 how	
 threads	
 and	
 processes	
 worked	
 in	
 Python,	
 inter-­‐process	

communication	
 and	
 a	
 deeper	
 understanding	
 of	
 Seismology.	
 This	
 project	
 served	

as	
 a	
 great	
 opportunity	
 for	
 me	
 to	
 enhance	
 my	
 Python	
 development	
 skills	
 along	

with	
 maintaining	
 and	
 managing	
 a	
 large	
 project	
 using	
 the	
 Git	
 version	
 control	

system.	
 I	
 had	
 the	
 opportunity	
 to	
 build	
 the	
 TC1	
 seismometer	
 and	
 understand	
 how	

it	
 worked.	
 The	
 project	
 contained	
 elements	
 of	
 desktop	
 application	
 development	

along	
 with	
 adding	
 remote	
 functionality,	
 which	
 allowed	
 me	
 to	
 refresh	
 a	
 lot	
 of	
 the	

concepts	
 I	
 had	
 learnt	
 in	
 the	
 previous	
 years	
 of	
 my	
 BTech	
 IT	
 degree.	

7.	
 Conclusion	

	

With	
 the	
 completion	
 of	
 PyjAmaseis	
 I	
 have	
 not	
 only	
 managed	
 to	
 achieve	
 all	
 my	

goals	
 for	
 this	
 project	
 but	
 have	
 managed	
 to	
 develop	
 an	
 application	
 that	
 carries	

more	
 functionality	
 than	
 what	
 was	
 initially	
 laid	
 out.	
 PyjAmaseis	
 not	
 only	
 contains	

the	
 core	
 functionality	
 such	
 as	
 live	
 plotting,	
 saving	
 and	
 uploading	
 of	
 data,	
 but	

more	
 importantly	
 simplifies	
 the	
 whole	
 process	
 to	
 make	
 it	
 easier	
 for	
 students	
 and	

teachers	
 to	
 use.	
 The	
 additional	
 functionality	
 developed	
 into	
 PyjAmaseis	
 enriches	

the	
 application	
 with	
 fixes	
 from	
 currently	
 existing	
 seismology	
 applications	
 along	

with	
 providing	
 enhanced	
 features	
 such	
 as	
 a	
 Graph	
 Shift	
 option	
 for	
 calibrating	
 the	

plot	
 on	
 the	
 y	
 axis	
 and	
 displaying	
 of	
 a	
 1	
 hour	
 plot	
 to	
 get	
 clearer	
 visual	
 display	
 of	

the	
 seismic	
 nature	
 of	
 the	
 plot.	
 PyjAmaseis	
 as	
 it	
 is	
 can	
 now	
 be	
 deployed	
 on	

computers	
 in	
 schools	
 that	
 have	
 been	
 provided	
 a	
 TC1	
 seismometer	
 and	
 therefore	

allow	
 students	
 to	
 have	
 a	
 more	
 informative	
 and	
 educative	
 learning	
 experience	

when	
 learning	
 about	
 seismology.	
 	

	
 	
 	
 	
 	
 34	

	

The	
 component	
 and	
 connectors	
 architecture	
 of	
 PyjAmaseis	
 allows	
 developers	

around	
 the	
 world	
 to	
 easily	
 implement	
 and	
 add	
 their	
 own	
 features	
 to	
 the	
 list	
 of	

features	
 already	
 existing	
 in	
 PyjAmaseis.	
 They	
 can	
 also	
 modify	
 existing	

components	
 without	
 affecting	
 other	
 components.	
 Thus	
 this	
 makes	
 PyjAmaseis	

highly	
 adaptable	
 and	
 accessible	
 to	
 keen	
 developers	
 who	
 want	
 to	
 enhance	
 the	

capabilities	
 of	
 this	
 application.	

	

The	
 sub-­‐second	
 plotting	
 precision	
 of	
 the	
 plotting	
 component	
 would	
 definitely	

make	
 Professional	
 Seismologists	
 around	
 the	
 world	
 interested	
 in	
 using	

PyjAmaseis	
 for	
 real	
 seismological	
 calculations.	

	

Thus	
 PyjAmaseis	
 is	
 an	
 all	
 round	
 application	
 that	
 can	
 serve	
 multiple	
 purposes	

depending	
 on	
 the	
 environment	
 of	
 use.	
 PyjAmaseis	
 is	
 a	
 great	
 application	
 for	

educational	
 seismology	
 and	
 is	
 equally	
 as	
 highly	
 functional	
 as	
 other	
 seismology	

applications	
 for	
 professional	
 seismologists	
 to	
 use	
 in	
 their	
 day-­‐to-­‐day	
 work.	

8.	
 Future	
 Work	

	

There	
 is	
 always	
 a	
 way	
 to	
 make	
 something	
 better	
 and	
 PyjAmaseis	
 is	
 no	
 different.	

There	
 are	
 several	
 features	
 I	
 feel	
 that	
 must	
 be	
 developed	
 into	
 PyjAmaseis	
 to	
 make	

it	
 a	
 more	
 comprehensive	
 solution.	
 Several	
 of	
 these	
 features	
 are	
 described	
 below	

along	
 with	
 potential	
 ways	
 of	
 implementing	
 them.	

	

It	
 would	
 be	
 a	
 valuable	
 feature	
 to	
 look	
 into	
 being	
 able	
 to	
 stream	
 data	
 from	
 one	

station	
 to	
 another	
 and	
 plotting	
 it	
 there	
 live.	
 This	
 way	
 PyjAmaseis	
 could	
 plot	
 the	

live	
 data	
 from	
 another	
 station	
 somewhere	
 else	
 in	
 the	
 country	
 or	
 even	
 around	
 the	

world.	
 In	
 discussions	
 with	
 Mat,	
 he	
 told	
 me	
 that	
 this	
 feature	
 could	
 be	
 easily	

implemented	
 using	
 a	
 free	
 IRC	
 (Internet	
 Relay	
 Chat)	
 client	
 that	
 takes	
 care	
 of	
 all	

the	
 communication	
 requirements	
 between	
 all	
 the	
 clients	
 (PyjAmaseis	
 instances)	

connected	
 to	
 it.	
 It	
 works	
 by	
 creating	
 a	
 room	
 consisting	
 of	
 all	
 clients	
 and	
 a	
 client	

(A)	
 can	
 choose	
 to	
 subscribe	
 to	
 another	
 client	
 (B)	
 in	
 which	
 case	
 any	
 data	
 sent	

from	
 client	
 B	
 to	
 the	
 IRC	
 is	
 forwarded	
 to	
 client	
 A.	
 Clients	
 can	
 also	
 subscribe	
 to	

multiple	
 clients	
 at	
 once.	
 There	
 are	
 several	
 freely	
 available	
 IRC	
 chat	
 clients	

available	
 on	
 the	
 Internet	
 such	
 as	
 mIRC	
 and	
 kiwiirc	
 to	
 name	
 a	
 few.	

	

One	
 of	
 the	
 very	
 important	
 features	
 that	
 should	
 be	
 implemented	
 is	
 to	
 provide	

visual	
 cues	
 such	
 as	
 popups	
 and	
 labels	
 that	
 will	
 display	
 when	
 a	
 pre-­‐recorded	

seismic	
 behaviour	
 is	
 noticed.	
 Labels	
 are	
 a	
 feature	
 provided	
 by	
 Matplotlib	
 and	
 can	

be	
 incorporated	
 effectively	
 to	
 align	
 with	
 the	
 overall	
 learning	
 goal	
 of	
 the	

application.	
 	

	

	
 	
 	
 	
 	
 35	

Finally	
 the	
 ability	
 to	
 drag	
 and	
 save	
 a	
 desired	
 section	
 of	
 the	
 plot	
 into	
 a	
 SAC	
 file	

should	
 be	
 incorporated	
 into	
 PyjAmaseis	
 as	
 this	
 allows	
 seismologists	
 to	
 quickly	

select	
 a	
 part	
 of	
 the	
 plot	
 that	
 represents	
 an	
 earthquake	
 and	
 study	
 or	
 share	
 it	
 with	

others.	
 This	
 is	
 a	
 valuable	
 feature	
 as	
 it	
 gives	
 the	
 user	
 the	
 flexibility	
 to	
 save	
 custom	

sized	
 SAC	
 files	
 instead	
 of	
 the	
 default	
 1	
 hour	
 long	
 SAC	
 files.	
 Matplotlib	
 keeps	
 track	

of	
 the	
 exact	
 x	
 and	
 y	
 coordinates	
 of	
 the	
 cursor	
 when	
 it	
 is	
 within	
 the	
 plotting	
 figure.	

By	
 using	
 mouse	
 events,	
 such	
 as	
 clicked	
 and	
 released,	
 along	
 with	
 the	
 cursor’s	

starting	
 and	
 ending	
 coordinates,	
 we	
 can	
 determine	
 which	
 plot	
 and	
 what	
 range	
 of	

values	
 the	
 user	
 is	
 trying	
 to	
 select.	
 Although	
 the	
 application	
 does	
 not	
 hold	
 the	
 data	

that	
 is	
 read	
 from	
 the	
 Seismometer	
 after	
 it’s	
 plotted,	
 we	
 can	
 access	
 the	
 respective	

SAC	
 file	
 and	
 retrieve	
 the	
 portion	
 that	
 represents	
 the	
 users	
 selection.	
 	

	
 	
 	
 	
 	
 36	

9.	
 Bibliography	

	

1. Cochrane,	
 L.	
 (2009).	
 Winquake	
 Version	
 2.8	
 documentation.	
 Retrieved	
 on	

August	
 4th	
 2014	
 from	
 http://psn.quake.net/software/wq28doc.pdf.	

	

2. Coleman,	
 B.,	
 &	
 Gerencher,	
 J.	
 (2008)	
 A	
 software	
 system	
 for	
 real-­‐time	

sharing	
 of	
 seismic	
 data	
 in	
 educational	
 environments.	

	

3. Garlan,	
 G.,	
 &	
 Shaw,	
 M.	
 (1994).	
 An	
 Introduction	
 into	
 Software	
 Architecture.	

Carnegie	
 Mellon	
 University	
 Pittsburgh,	
 PA.	

	

4. Gerencher,	
 J.,	
 &	
 Jackson,	
 R.	
 (1991).	
 Classroom	
 utilization	
 of	
 a	
 multi-­‐axis	

lehman	
 seismograph	
 system.	
 Journal	
 of	
 Geological	
 Education.	

5. Gerencher,	
 J.,	
 &	
 Sands,	
 M.	
 (2004).	
 Online	
 near-­‐real-­‐time	
 seismic	
 system	

for	
 the	
 classroom.	
 Journal	
 of	
 Geological	
 Education.	

	

6. IRIS.	
 (2014).	
 Iris	
 -­‐	
 education	
 and	
 outreach.	
 Retrieved	
 August	
 3rd	
 2014	

from	
 http://www.iris.edu/hq/programs/education_and_outreach.	
 	

7. IRIS.	
 (2014).	
 Iris	
 -­‐	
 incorporated	
 research	
 institutions	
 for	
 seismology.	

Retrieved	
 August	
 3rd	
 2014	
 from	
 http://www.iris.edu/hq/.	
 	

	

8. jAmaseis.	
 (2009)	
 Seismology	
 Software	
 Meeting	
 the	
 Needs	
 of	
 Educators.	

Retrieved	
 October	
 18th	
 2014	
 from	

http://www.iris.edu/gallery3/research/2010proposal/E_and_O/system.	

	

9. Matplotlib	
 –	
 Python	
 Plotting	
 Library.	
 Retrieved	
 October	
 25th	
 2014	
 from	

http://matplotlib.org/.	

	

10. ObsPy.	
 (2012).	
 A	
 Python	
 Framework	
 for	
 Seismology.	
 Retrieved	
 October	

25th	
 2014	
 from	
 https://github.com/obspy/obspy/wiki.	

	

11. Paradigm.	
 (2014).	
 Paradigm	
 Advanced	
 Science	
 for	
 everyone.	
 Retrieved	
 on	

August	
 5th	
 2014	
 from
http://www.pdgm.com/solutions/seismic-­‐processing-­‐and-­‐imaging/.	

	

12. PyDev.	
 (2011).	
 PyDev	
 –	
 Python	
 IDE.	
 Retrieved	
 August	
 24th	
 2014	
 from	

http://pydev.org/.	
 	

	

13. Ramirez,	
 J.	
 (2012).	
 Learning	
 from	
 Manifold	
 –	
 Valued	
 Data:	
 An	
 Application	

to	
 Seismic	
 Signal	
 Processing.	
 University	
 of	
 Colorado.	

	

14. RU.	
 (2014).	
 New	
 Zealand	
 Seismographs	
 for	
 Schools.	
 Retrieved	
 October	

15th	
 2014	
 from	
 http://ru.auckland.ac.nz/.	

	

15. TUTS+.	
 (2010).	
 Game	
 Development	
 Glossary	
 –	
 Blitting.	
 Retrieved	
 October	

22nd	
 2014	
 from	

http://gamedevelopment.tutsplus.com/articles/gamedev-­‐glossary-­‐what-­‐
is-­‐blitting-­‐-­‐gamedev-­‐2247.	

	

16. WesternGeco.	
 (2012).	
 The	
 Omega	
 Seismic	
 Processing	
 System	
 –	
 Seismic	

analysis	
 at	
 your	
 fingertips.	
 Retrieved	
 October	
 25th	
 2014.	

