aseis

Acknowledgements

[would like to take this opportunity to express my deepest gratitude to my
Industry Supervisor Dr. Kasper van Wijk for supporting me and giving me
constant encouragement throughout the course of this project.

[also take this opportunity to express my sincere gratitude to my Academic
Supervisor Dr. Patrice Delmas, who provided me with valuable advice on
presentations and report writing throughout the year.

Lastly, I thank Matiu Carr from Science IT for offering his time to work with me
to setup the remote functionality for this project.

Table of Contents

ACKNOWIEdZEMENLS ... s e 1
ADSETACE ... AR e 3
1. INErOAUCHION ...t ——————— 4
2. Related WOrK.... s 5
2.1 Paradigm Seismic Processing and Imaging Solution.........uuinninssnsnninnnns 5
2.2 The Omega Seismic Processing SyStem........coimnnsssssssssssssssns 6
20 8 7, N 11 B Y), 7
2.4 AIMASECIS i 8

B D LT) 9
3.1 Project REQUITEIMENTScccimreimsnismsmssssmssnsssenass 9
3.2 Software ArChiteCtUre ... —————— 10
4. IMPlementation ... ———————————————— 11
00 OO0 Y 1 - o o 11
O =040 0] U0 oY e e 11
4.1.2 CONtiNUOUS COIIECTION c.ucreurieeeereteetseetseeseessesssesse s ssess st s 13

720 o U o 13
4.2.1 STATIC PLOTHINE oo tieuieereeererereesseteeessesesssesssesssssse s sesse bbb bbb s sb s b 13
4.2.2 Version CoNtrol PrODIEM ... essissessesessssssesssesssesssssssesssssssssssssseens 14
4.2.3 DYNAMIC PLOTHNEZ couieereeereereteeeseeiectseessessscssesssssssesssessss st sesssess s sssas s sassssss s sas 14
4.2.4 CaliDrating the XIS ssseesse bbb st sesssa s ssssse s s s 16
4.2.5 PlOttNG PrODIEINS .ottt sssssse s bbb sesssesssess s ssssse s s 19

0 Y 14) 1 24
T Y 1 - 1) 25
4.5 Additional FEATUTESccvvimnmnmmimnmnmssnsmssssssssssssssssssssssssssss s ssssssssssss 26
4.5.1 TCL PIUE & PlaY ..oieeriereereeseiseeseeiestseessesssssse s sessesssessse bbbt sess st sesssa st s sas 26
4.5.2 USET INTETTACE ..oreureeereereiereeseieeeseeteetsesssess s ssssssse bbb bbb s bbb b 28
4.5.3 Real-time Ge0-10cation QUETYING ..c.coureemeereemeenseeseesseseessessesssesssesssssssesssesssessssssseens 29
4.5.4 Y PLOt SHIfE. oo sssseessses s s s sssssssssessssss s sssessssess s sssssssssssassesssssssenes 29
4.5.5 1 HOUT PIOtcuiitiieriiseeseistese ettt sesssesssss s sesse bbb bbb s bbb s 30

5. RESUILS...rt s —————————————— 31
6. EValuation.....cmssssssssssssssssssssssssss s 33
78 0701 1 L1 T o L 33
8. Future WorkK......ossns 34
9. Bibliographycccsssssa——————ns 36

Abstract

Seismology is a topic hardly dealt with or taught in schools. This is due to several
reasons ranging from not having a set curriculum to not having the tools in the
classroom to demonstrate and simulate earthquakes. In an attempt to promote
the teaching of Seismology in schools and to make it the best educational
experience for the students, the Incorporated Research Institutes of Seismology
(IRIS) and The University of Auckland’s (UoA) Physics Department (RU) have
invested into developing an education program called Seismographs in Schools
in a bid to provide all the required components to teach Seismology in Schools.
IRIS has created a curriculum involving classroom activities, quizzes, and
learning content. These resources are freely available for teachers to access,
allowing them to structure it into a subject. However there is more to what is
being offered. The government has funded thousands of schools in USA to
acquire a TC1 educational seismometer that can be used in conjunction with the
curriculum provided by IRIS to make it a highly interactive course for students.
In the same manner The UoA Physics Department has also provided many
schools around NZ with computers and TC1 seismometers. However the
software that is currently available is far too complicated for teachers and
students to use. This project report will present a new software application
developed in order to meet the needs of teachers and students for teaching and
learning about seismology. This application features all the required core
functionality developed within a simple and user-friendly user interface. The
design, implementation of the application along with evaluation and future work
are discussed in this report.

1. Introduction

Seismology is the study of earthquakes and seismic waves that move through an
around the Earth. With the help of seismometers seismologists study the internal
structure of the Earth. Although seismology is a very important modern day
topic, schools have been unable to create a structured curriculum to teach
seismology as a subject because there are several components required such as
the necessary hardware and software to demonstrate what is taught in the
curriculum. Therefore due to a lack of one or all the mentioned components
(curriculum, hardware and software) many schools are unable to teach
Seismology. To address this issue the Incorporated Research Institutions for
Seismology (IRIS) have invested into creating a curriculum involving classroom
activities, quizzes, and learning content. Along with this they have provided
thousands of schools in the United States with educational seismometers to
enhance the learning of the students. The University of Auckland’s (UoA) Physics
Department is also engaged in providing computers and TC1 educational
seismometers to schools throughout New Zealand. This program is known as
Seismographs in Schools. The aim is to provide the curriculum, hardware and
software to schools so that they can formulate a structured course out of it and
teach seismology as a subject.

The difficulty that both IRIS and UoA are facing is that although the curriculum is
well developed and they are able to provide schools with educational
seismometers, the currently available software that the teachers and students
have to use is far too complicated for a classroom environment. The software is
quite intricate and most of the complex features of the software are not used.
There is a limited choice when it comes to Seismology data processing and
sharing suites and the ones currently available aren’t very suitable for teaching
seismology. Hence the aim of this project is to develop an application that
incorporates the core functionality present in the existing Seismology data
processing and sharing suites along with laying heavy emphasis on a simple,
intuitive and user-friendly design.

The goal of this project is to develop a robust cross platform application for
educational seismology that provides the core features such as plotting live data
from the seismometer, saving seismic data and sharing this data with other
schools online. At the same time, whilst keeping the end users in mind, [will be
looking into developing an interface that is suited for a learning environment.

This project report will discuss the design decisions, implementation, and a
results section that highlights the significance of the solutions and features
developed into the software.

2. Related Work

There are a number of libraries and modules available that let us work with
seismic data but not too many applications. Among these most are limited to one
platform and are all highly sophisticated. A few of the currently available
Seismology Data processing and sharing suites are presented below.

2.1 Paradigm Seismic Processing and Imaging Solution

A professional seismic data processing and imaging solutions suite is offered by
Paradigm. This software is highly professional and was built for professional
seismologists. The Paradigm seismic processing and imaging solutions reduce
uncertainty and improve reliability through better seismic signal quality,
positioning, and content. Their proprietary algorithms translate billions of bits of
seismic data into highly accurate, high-definition images of the subsurface,
enabling geoscientists to visualize the earth’s formations.

Although Paradigm seismic processing and imaging solutions provide high
definition imaging tools and accurate seismic data plotting, it is not suited for a
classroom scenario for teaching Seismology as it has been built for Professional
Seismologists.

Depth Migrated Section | Interval Velocity Section | Residual RMS Velocity |i360 Ref Gather (Stacked Azimuths) # 1625 (Il
g@.,,l._}@.,,);ﬂ;,l_l@g_ﬂ‘l_;t ,All._llm;,JL,Jgr‘.lf‘,ngf - %m?n,;m}y;_m ,‘?n,.j‘%g.n:p@.x I;.;]ﬂA _2_,, ';I‘.A.,L,,,g,,llA‘I_E,,,,;;fJLf!*IL ,,g, =
R -

-

LI

&bl S

S
S
S
=

]
!
Y
l
2500}
]
J
J

=
S
S
S

ey ‘_ME;:A. T .

Figure 1 Paradigm software showing GeoDepth velocity determination, modeling and imaging

Figure 2 Paradigm software showing seismic velocity model with salt

2.2 The Omega Seismic Processing System
The Omega Seismic Processing system is a scalable system that allows for
Seismic processing and imaging on a single workstation or clusters of computers.
The Omega provides over 400+ geophysical algorithms for data manipulation.
The Omega provides geophysicists support for Project management along with a
workflow building application. The Omega SeisView geoscience and engineering
software is a 2D canvas that gives geophysicists the tools to analyse and compare
seismic data. The SeisView can store, display and plot trace attributes. While The
Omega SeisView contains advance seismic data processing features and
algorithms, it is not very suitable for teaching seismology in schools. The features
are quite complicated and thus will be a challenge for teachers and students to
use.

5:‘:::::: A Y IED

N AdaaBq+m wiiRoPBeoEll » cOCEE S @

OENT M NN I 8 0 0 U8 100 Y M N Y M N Y am
S0 (4N

100
o
” b oo
"

P 1000

P
oot
v
o

004
(AL]
(AL J

o

0
L L
oary

2.3 jAmaseis

The currently used software in the Seismographs for schools program is known
as jAmaseis. jAmaSeis facilitates the study of seismological concepts and allows
users to obtain data in real-time from either a local instrument or from remote
stations. As a result, users without an instrument can utilize the software. Users
can view a graphical representation of seismic data in real time and can process
the data to determine the characteristics of seismograms such as time of

occurrence, distance from the epicentre to the station, magnitude, and location.

Event View

Lat 9.3453° Lon -96.9017°
Station ID Station Name Location Lat/Lon Distance Magnitude Filter StartTime
NHCA (38.30, -122.29) 28.50" 3168.9... Not Comput... None 06/30/2010 03:. M m
WwCiL (41.79, -88.45) 29.70° 3302.0... Not Comput... None 06/30/2010 03:. M

S(auon Actions

__Change Station Information) (Compute Distance (Compute Magnitude) (Set Filter (Change Selection \ (Remove Station)

(" Add Station) (~ Goto Stream View) (" Help)

Figure 4 jAmaseis Event Model analysis

(==
e Ve Ot

0625 Lovgpreers 7537

L
il

Iuhllillll ol

ST ' [y 1'!\1"“”':

‘I OO SET IR R \ll;hdhulu |

1 T A }

h) T Y Y) T Y Y T T 13
tomoon e smoon 0om oo
Lot Ve 33 Netwerk Staton: Cormmectnd ‘Saurgies Catectet: 424G Magrst e 50

Figure 5 jAmaseis Stream View

jAmaseis contains all the basic functionality required in a seismology data
processing suite to fit the Seismographs in Schools Program curriculum and
goals, however it has been reported to be a struggle for students to start getting
comfortable with using and learning from this software as the user interface is
not easy to understand and not many learning cues are provided. The software
provides the functionality but is not focused on being a learning tool and most of
the intricate functionality also is not used.

2.4 Amaseis

Prior to the development of jAmaseis a developer named Alan Jones developed
the first Seismology data processing and sharing suite known as Amaseis. This
application recorded and monitored data from a seismometer known as the AS-1
(Amateur Seismometer). This software had the functionality to analyse seismic
data such as mseed or SAC files downloaded from the Internet. The two major
issues with this software was that it ran on Windows operating system only and
after a decade of updating the software Alan stopped maintaining Amaseis.
Although Amaseis is no longer being maintained, the functionality that was
available has been developed into jAmaseis.

Love Surface Waves
Rayleigh Surface Waves

1 degrees
o = -4 .
9 =

=
=

~
=

=
=

o
o
=
o
7
c
)
-
7
o
o
=
™
o
7
=
7
-
I
o
—
\0)

1 1
a5 50
Minutes

Figure 6 Amaseis Travel Time Canvas

3. Design

3.1 Project Requirements

The requirements for this project were given to me in the first meeting I had
with my Industry Supervisor, Dr. Kasper van Wijk. The goal of this project was
to create an application that was simple and intuitive, and develop all the core
functionality present in the existing Seismology data processing and sharing
suites such as Amaseis and jAmaseis. This core functionality consisted of data
collection from the seismometer, displaying the collected data live, saving the
data into seismology formatted files and finally being able to share this saved
data online with other schools connected to the RU network. The application
needed to be cross-platform so it may run on Linux, Mac OS, and Windows
operating system.

Although there are several languages such as C++, C, Java, and Python that can be
used to create a cross-platform application, Dr. Kasper insisted [developed the
application in Python. The main reason behind this is because there is an open
source Python framework available for Seismology called ObsPy. This
framework provides parsers for common seismology file formats, clients to
access data centres and seismological signal processing routines, which allow the
manipulation of seismological time series. The goal of the ObsPy framework is to
facilitate rapid application development for seismology.

Along with recommending the use of Python and ObsPy, Dr. Kasper also
informed me in the first meeting that out of all the available Python Plotting
libraries, Matplotlib is one of the most comprehensive 2D Plotting libraries
available and requested that I use this library for the live plotting of the data
collected from the TC1 seismometer.

Therefore the goals for this project can be summarized in the following points:

1. Develop a Python application that uses the ObsPy Framework and the
Matplotlib Plotting Library
2. The application must provide the core features required to be a
Seismology data processing and sharing suite. These consist of:
a. Data Collection from TC1 seismometer
b. Live plotting of data collected from TC1 seismometer
c. Saving collected data into seismology specific file formats
d. Sharing saved files on the NZSeis network
3. Application must be developed keeping the end users in mind, who are
teachers and students. This requires the application to be:
a. Simple and Intuitive
b. Accurate
c. Robust

d. User friendly

The aim of this project is to develop an application that incorporates all the
requirements defined above.

3.2 Software Architecture

Prior to diving into the development of the application, | spent some time trying to
understand how the overall structure of the application would look like, and plan
how | would carry out the development of the core features. It is important to
understand the software architecture in the initial phases of the project because the
architecture once created will become harder to change in the future. Although
modifying individual processes within the architecture can be done, the modifying of
the overall structure will become difficult once development begins.

| began by visualizing the application to consist of the 5 core features - Data
Collecting, Live Plotting, Saving, Sharing and the Ul window. These individual
components would need to talk to each other via some form of inter-process
communication.

Figure 7 Component and connecters software architecture

In order to achieve this, I looked into a way to divide the application to run in
five separate parts. This type of software architecture can be achieved by using
the Multi-Threading or Multi-Processing modules to divide the functionality so
that they ran separately on different threads or processes. Using inter-
process/thread communication channels such as Pipes and Queues allows for
communication between the various components. This sort of architecture is
essential for this application, as we want the Plotting process/thread to run
concurrently with the Collecting process/thread to allow real-time plotting of
the collected data. A non-concurrent architecture would hinder the possibility of
real-time concurrent collecting and plotting of the data, which is a key
requirement for this application. With a concurrent component based
architecture we can spawn another thread to manage the UL. This would be the
ideal way of developing PyjAmaseis by giving each thread its own set of tasks to
manage. This way the developers in the future would find it easier to debug or
update specific parts of PyjAmaseis. This type of architecture is known as

10

component and connectors architecture where there is emphasis on the
separation of concerns (SoC) based on the wide-ranging functionality provided
by the application. Separation of concerns is a design principle for separating a
computer program into distinct parts in such a way that each component carries
out its own tasks but is a part of the whole system.

4. Implementation

Before I could begin I first setup the environment. [installed Python 2.7.8 along
with the PySerial module. I had experience with using the Eclipse IDE, hence
looked into a way to write, compile and run Python scripts on Eclipse. To achieve
this I downloaded PyDev and followed a YouTube video (link) to setup the
environment. PyDev is a Python IDE for Eclipse. Dr. Kasper offered me a TC-1
seismometer so that I could develop the project at home.

4.1 Collecting

[began the implementation of this project by focusing on one component of the
architecture at a time starting with the Collecting component. However, because
the Collecting component and Plotting component are interrelated I worked on
them simultaneously but for the purpose of this report [would like to explain
each component individually and will draw from other components where
required.

4.1.1 Sampling Data

[started off by using a small Python script that was obtained from -
http://eliaselectronics.com/plotting-serial-data-using-gnuplot-and-python/ that
saved and printed the data coming in from the TC1 seismometer via the serial
port. I used the stream.readline() method provided by the PySerial module to
read each value from the seismometer. After collecting a fixed amount of samples
the script then saves the recorded values into a .dat file (data.dat), which would
then be plotted using an application called GNUPIot.

11

#!/usr/bin/env python

import the serial module so we can access the serial port
import serial

set up serial port
serialPort® = serial.Serial('COM3', 9600)

open file object in write mode
dataFile = open('data.dat', 'w')

get number of samples to take
don't prompt user --> piped in from bash script
numberSamples = int(raw_input(""))
get specified number of samples
for i in range(numberSamples):
print i # output sample number to screen
reading® = serialPort@.readline()
dataFile.write(str(i) + ' ' + str(reading@)) # write sample number and reading to the file

close file object, good practice
dataFile.close()

close serial port to free it for other applications
serialPort@.close()

Figure 8 Python script that reads data from TC1 and saves into .dat-formatted file
Figures 9 and 10 shows the data saved in a data.dat file, and an illustration of

that data after being plotted using GNUPlot. Here we can see most values lie
between 32000 and 33000.

‘¢:\Python2T\data.dat'——

00 L L L L L
0 200 400 600 800 1000

Figure 10 GNUPIot plotting data from data.dat

Figure 9 Data from TC1 saved in
data.dat

12

4.1.2 Continuous Collection

After sampling the values I shifted to a continuous form of reading the data from
the TC1 seismometer by using an infinite while loop in Python and based on the
time and other factors, carry out different tasks or send signals to other
components of the application to change to the appropriate settings. For example
when the hour changes the Collecting component sends a signal to the Plotting
component to start plotting on a new line. The code sample below shows this
behaviour, the while True: loop that continuously reads the values sent by the
TC1 Seismometer over the serial port along with saving mseed files every hour.

try:
while True:
seismicData = np.array([1)
timeout_start = time.time()

#run while loop for 1 hour

while time.time() < timeout] start + timeout:
reading® = serialPort@.readline()
linestr = reading®@.decode('utf8')
seismicData = np.insert(seismicData, @, linestr)

#upon exiting while loop create a trace object and save the trace as an .mseed file
trace = Trace(seismicData, None)
trace.write('Mini-SEED-'+str(fileCounter)+'.mseed', format='MSEED')

fileCounter = fileCounter + 1

#creates a static plot of the trace
trace.plot()

Figure 11 PyjAmaseis using an infinitely loop to continuously collect data from TC1 seismometer

4.2 Plotting

The plotting component of the application focuses on providing the user with a
visual representation of the data that is collected by the TC1 seismometer. The
aim of this component is to provide a live plot of the data that is to sub-second
precision. In the field of seismology plotting data without any latency is of high
importance. This will be further explained in the results section of this report.

4.2.1 Static Plotting

As covered in the Collecting component, I used a third party software named
GNUPIot to plot a .dat file that contained samples of values collected from the
TC1 seismometer. Instead of plotting the data using an external application, I
looked into a way to plot the data as it was being collected. The first step I took
was to create a static plot after every hour. These static plots plotted the values
that were stored in an array which were used to save mseed or SAC files. These
are seismology data file formats.

13

BW.RJOB. EHZ

1242
826
411

4
420
835t
-1251¢f

00:20:03 00:20:12 00:20:22 00:20:32

Figure 12 Plot of data displayed when trace.plot() method is called after saving an mseed file

4.2.2 Version Control Problem

[chose to implement a static plot as I was developing each component in
versions, each version built upon the previous version. [faced a problem where I
started having many individual Python scripts each with incremental changes
and it became difficult to keep track of the latest version of the application.
Therefore I started using Git version control system to manage my project. This
effectively solved the problem of versioning and made it easier to create
branches when I started working on a new functionality so that I always have a
working copy of PyjAmaseis before I began any new implementation. Dr. Kasper
had offered me to work on the project in his office where he had setup a station
with a TC1 seismometer. Therefore any development that I did at home or at his
office, I could push and pull accordingly with GitHub, which made it easier to
manage the development of the application.

4.2.3 Dynamic Plotting

After developing a static plot feature in the application, I focused my attention on
creating a dynamic plot that plotted data concurrently as it was being read from
the TC1 seismometer. As part of the requirements I received from Dr. Kasper,
Matplotlib was the plotting library for Python he requested me to use for the
plotting functionality of this application. The reason behind this is not only
because Matplotlib is a very comprehensive 2D plotting library but also Dr.
Kasper has used it in previous projects, and there is a lot of support available for
it on the web. Although Matplotlib provides support for plotting various types
and styles of static graphs and plots when it comes to live plotting, the plotting
functions within the library are highly inefficient.

The end goal of this Dynamic Plotting component is contained in the following

points. Dr. Kasper provided specifications once I started working on the Plotting
component of PyjAmaseis. These requirements were:

14

1. Display a 24 Hour plot

2. Show 0-60 minutes on the x axis

3. Show Current UTC Hour on the Top of the Y axis and increment hour as it
comes down towards 0

4. Clear Plot at the end of 24 hours and restart plotting again from the top

[began the live plotting functionality by simply plotting an array that contained
all the values that were read from the TC1 seismometer. All the values that were
read were constantly being appended to the array. The existing plot would be
cleared every time and array containing old and new values were redrawn over
and over again.

74 Pymaseis = | B 22
40000
38000 |
wn
c
.© 36000 |
£
o
2
>
=
E 34000
]
0
32000 |
30000 L i i]
0 500 1000 1500 2000 2500
Time
20:12:28
D00+~ B a0 y-uen

Figure 13 PyjAmaseis first attempt at live plotting

This form of plotting kept re-plotting an array that contained new values every
10 milliseconds. This proved to be highly inefficient however I did not notice the
implications of this inefficiency until I ran the application for more than 5-7
minutes. Because of the current axis, the plot would only show the first 2 or 3
minutes of data hence the inefficiency was hardly noticeable but after I worked
on setting the right x and y axis this became a major issue. I started noticing a
delay between the time I physically shook the seismometer and when the
application plotted this incident. Therefore instead of sending the complete
array with all the values, I sent 10 values at a time and instead of clearing the

15

Seismic Vibrations

40000

35000

30000

25000

20000

plot I tried to plot the 10 new values over the currently existing plot. However
this did not solve the latency issues. I will discuss this in further detail after
explaining how I set the correct x and y-axis for the plot.

4.2.4 Calibrating the axis

Setting the x-axis of the figure was relatively simple. Using the set xticks method
that was provided in the Matplotlib module, I set the x-axis to go from 0 - 60
with an interval of 1. This can be seen in the figure 14. When plotting [send the
plot function 2 arrays - x and y. The y values are provided by the seismometer at
a rate of 18 values per second. Initially I was sending the y array with values
received from the TC1 seismometer and the x array, which had incremental
values starting from 0.1 onwards. This was an erroneous way of plotting, as the y
values did not have a representative corresponding minute x value to link with.
Therefore when a value is read from the input buffer of the serial port (i.e. sent
by TC1 seismometer), the exact minute, second and millisecond it was read at
would be recorded in the x array. This allowed each y value to have an accurate x
value and thus accuracy of plotting was achieved.

0 12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Time(minutes)

Figure 14 PyjAmaseis x-axis labels (0-60)

Setting the y-axis labels was a little trickier. The aim here was to have 24 plots in
1 plot. Matplotlib allows us to create sub-plots within 1 figure. That means you
can create multiple separate plots within one window. Because I needed to

16

display 24 plots, plot of a whole day, I tried to create multiple subplots. When I
created 24 sub plots the outcome was not pleasing. The data plotted couldn’t be
clearly seen, as the plots were too small and too close to each other, and even the
axis labels were hard to understand. Hence [decided to move away from making
multiple subplots, and used only 1 subplot effectively by translating the values
according to the correct hour. This proved to be more effective and helped create
a user interface that wasn'’t cluttered and allowed the users to see the plotting
much more clearly.

@
mg,

0 R G

Figure 9 Using add_sublots() to create 24 subplots in one figure

For setting the y-axis labels to show 24 hours starting from the current hour, I
first wrote a method that calculates the number that occurs the most in an array,
and used the method to calculate the value TC1 provides when it is at rest. That
means, when the seismometer is not disturbed by any seismic activity, it rests on
or near a certain value and my aim was to find out what that was. After several
tests I found that the mode number was approximately 32750. With this
information [understood that the values provided by the TC1 seismometer
ranged between the values of 30750 and 34750 with 32750 being at the center
of oscillation. Thus [multiplied the range, which is 4000 (34750-30750) by 24 to
create an axis that could fit 24 separate plots. Therefore the y-axis then ranged
from 30750 to 130750. Depending on the hour the values from the TC1
seismometer are translated by a constant to plot according to the appropriate
hour. Once [managed to get 24 plots to show on 1 subplot, I looked into getting
the ytick labels. This was required because until now the y-axis labels were not
informative as it was showing a range of values from 30750 to 130750. They
have to display hours so using the datetime module I calculated the current hour
and wrote a method that used this information to generate an array containing
the next 24 hours along with providing their appropriate am/pm information.

17

The calculated times for the labels are in UTC time as per requirement. Thus the
end result of calibrating the x and y-axis can be seen in figure 16 where the x-axis
ranges from 0 to 60 to represent minutes and the y axis shows the hour
information starting at 8 AM at the top and goes through 24 hours as it reaches
the bottom. Note when the plot reaches the end of the hour it is shifted down by
an hour and starts plotting again and after completing 24 hours of plotting the
plot is cleared and the plotting begins again at the top.

[would like to briefly mention here how the graph plots without breaks.
Basically every array that is sent to the plotting component of the application
contains a new set of values that were read from the TC1 seismometer and in
order to link the previously drawn plot to the current set of values, I store the
last value of the previous array and insert it to the beginning of the new array of
values. This way the new set of values always begin where the previous plot
completed and this ensures continuity. However, when a change in hour is
detected, the new array with the set of values from the new hour will not connect
to the last value from the previous hour. Initially I faced a problem where the line
would cut across the graph from the right edge where the plotting finished for
the previous hour to the left edge where the plotting of the new hour began, but
by placing a simple hour check I prevent the two plots from being connected.
Therefore as long as the hour is the same, the last value of the previous array will
be inserted to the new array of values, and when an hour change is detected this
will not take place.

i

8 AM
9 AM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Time(minutes)

Aug 04 2014 08:41:48 AM

2(0/0|+| <&@l

Figure 16 PyjAmaseis y-axis labels show hours in 12-hour format UTC time

18

4.2.5 Plotting Problems

[briefly mentioned earlier that the Matplotlib plotting function is quite
inefficient. The problems I faced due to this inefficiency, the approaches I took
and the solutions to the problems will be explained here in detail.

After setting the x and y-axis labels, I set the application to a test to see if it can
plot 24 hours of continuous data and refresh and start again. However within 15
minutes the graph starts distorting and doesn’t return back to normal. This can
be seen in figure 17.

Py

2.m)

3

an
aam)

2z

:

am

FM
P

\
\
\
\
\
\
\
\
\
x \
o |

w

11eM

12 AM|

2lo/o)+ @ s

Figure 10 PyjAmaseis distorted plot

To understand this behavior I printed the y array before plotting to see if it
contained any odd or erroneous values. The problem here was I was receiving
values from the TC1 seismometer that when plotted resulted in plots as shown in
figure 17. For example, figure 18 shows that in an array of values ranging from
87000 to 88000, an unexpected 919 value gets saved in the array. This causes
the plot to draw a line from the previous value to the 919 value on the y-axis.
This results in distorted plots. Initially I thought this could have been a hardware
problem, however after thorough inspection of the errors printed in the output
console I realized that | have no need to decode the values that are read from the
TC1 seismometer. [was receiving errors such as “ValueError: invalid literal for
int() with base 10: "” and “TypeError: Can't convert ‘str’ object to int implicitly”.
When a value is placed in the serial port input buffer it contains the value and a
new line character for example “32700\r\n” when [decode it “decode =
readValuefromTC1.decode (‘utf8’)” the resulting decoded string is “32700rn”
therefore it cannot be converted in to an integer and hence a lot of errors were

19

thrown due to this small mistake. [realized after that there was no need to
decode the values and just by casting the read string into an int [would receive
the value [need for plotting (plottingValue = int(serialPort.readline())).

Although the distortion of the plots stopped, there was a delay that was noticed
from when a simulated seismic activity occurred and when the application
actually plotted it live. This delay would become noticeable after about 5-7
minutes and it kept increasing. A noticeable delay of 3-7 seconds increased into a
delay of several minutes as the plotting went on.

& Console 52 -] E’@l = f_‘“‘ v~ = 0O
C:\Users\Saketh\workspace\Pymaseis\version2.py

8.79670000e+04 8.79450000e+24 8.79210000e+084] o
[87921. 874@8. 87393. 87379. 87368. 87367. 87362. 87365. 87351.

87334.]
[8.73 04 8.730. 04 8.72770000e+04 9.00000000e+00

8.72510000e+04 8.72730000e+04 8.73150000e+04 B8.73600000e+04

8.74090000e+04 8.74460000c+24 8.74910000e+084]
[87491. 87513. 87548. 87561. 87568. 87557. 87334. 873@3. 87277.

87251.]

[87251. 87246. 87251. 87278. 87315. 87360. 87409. 87446. 87491.
87545.]

[87545. 87586. 87633. 87665. 87695. 87708. 87719. 87718. 87703.
87664. 87595.]

[8.759 04 8. 04 4. 01 8.7 04
8.75 04 8. 04 3. 04 8.76 o
8.76780000e+04 8.77 04 8.7 04 8.7 04]

[87869. 87932. 87981. 88026. 88056. 88146. 87993. 87849. 87728.

87642.]

87642. 87590. 87568. 87568. 87586. 87626. 87678. 87738. 87799.
87869. 87932.
87932. 87999. 88184. 88171. 88166. 88158. 88158. 88151. 88157.
88161. 88168.
88168. 88263. 88261. 88260. 88255. 88245. 88229. 88220. 88210.
88199.]
[geoeoo=) 88184. 88171. 88166. 88158. 88158. 88151. 88157. 88161.
919.] 87926. 87949.]

[87965. 87986. 87999. 88002. 87988. 87940. 87887. 87825.

87783.]
[87783. 88@38. 87997. 87961. 87930. 87916. 87988. 87919. 87926.
87949. 87965.] -

Figure 18 Cause of distorted plots found to be incorrect value in plotting array

[was under the impression that the delay was caused due to the fact that I was
sending the whole array to be replotted each time but even after, when I sent
only the 10 recent values collected from the TC1 to the plotting component - the
delay still persisted.

Up till this point [was using the threading module for Python to create a multi-
threaded application, one thread for collecting and one thread for plotting and
was wondering if it was due to the Global interpreter lock (GIL) in Python which
prevents multiple threads from running concurrently that delays were being
caused. I also realized that because the two threads can not run concurrently we
can never get true parallelism and one thread would always lag behind the other
as their instructions are executed one after the other. At this point I decided to
invest my time to learn about multiprocessing in Python and re-engineer the
architecture if required.

20

The threading module uses threads whereas the multiprocessing module uses
processes. The difference is that threads run in the same memory space, while
processes have separate memory. This makes it a bit harder to share objects
between processes with multiprocessing. Since threads use the same memory,
precautions have to be taken or two threads will write to the same memory at
the same time. This is what the Global Interpreter Lock is for.

Therefore upon realizing that threads will not allow for true parallelism I looked
into turning PyjAmaseis into a multiprocessing architecture in hopes that the
application would become more efficient and the delay problems would be
addressed. I rewrote PyjAmaseis into a multi-processing application and used
Pipes to send data from one process to another. The process of sending data
through a pipe is known as Pickling (at the sending end) and Unpickling (at the
receiving end). Although at first the re-engineering of the architecture seemed
like it solved the delay problem, but to my dismay, it still persisted and went
unnoticed for a longer period of time. The application was running more
efficiently now for sure, however, the problem still persisted. The delay couldn’t
be noticed till the application ran for 3 hours but soon after; the delay was
noticeable and kept on increasing.

Upon discussions with Dr. Robert Sheehan at the Computer Science Dept.
regarding this bizarre behaviour and delay problems, he recommended I conduct
some timing efficiency tests to see what component, or methods inside a
component was causing this problem. [found that the easiest way to do this
without having to spend a lot of time creating tests cases was to use the time
module to create two timestamps before and after certain method calls and
operations within the collecting and plotting components. After the block of code
I'm testing for is run, the time recorded after its completion is subtracted from
the time that was recorded before it started. This is demonstrated in the code
sample in figure 19.

startTime = time.time()
plot. draw(x, y, color='k")
endTime = time.time()

print{endTime - startTime)

Figure 19 Computing the time taken to execute the plot.draw method

This provided me with a microsecond value of how long each section of the code
ran for. To my surprise I noticed that the plot.draw() method in the plotting
component of the application took 0.39 seconds to begin with and kept
increasing to much larger time intervals as time progressed. What I discovered
was that although I was only sending the most recent 10 values that were read
from the TC1 seismometer, when these values are sent for plotting, all the points
that were plotted previously were stored and re-plotted along with the new

21

points. Due to the draw method being so inefficient this caused the plotting
component to slow down as the number of points it had to redraw kept
increasing.

TC1 Seismometer (PyjAmaseis)
Collecting Process]
Serial Port Input Buffer
S Pipe
Plotting Process
plot.draw()
(N J

Figure 20 shows the how data is sent from TC1, collected by Collecting Process and sent Plotting
Process via a Pipe

[will now provide specific information about the nature of the problem, and
explain how [came to address this issue with the use of a very fast rendering
technique known as Blitting. In my timing efficiency tests [also recorded several
other key information that led me to understand how the delay caused by this
one method affected the whole program. Below is a diagram depicting the
structure of PyjAmaseis and how it is connected to TC1.

The following statistics were calculated and were crosschecked with Dr. Kasper
to confirm that they aligned to the specifications. The TC1 seismometer pushes
values into the serial port input buffer at the rate of 18.76 values per second. I
could determine the size of the input buffer by using the serialPort.inWaiting()
method which returns the number of characters currently in the input buffer.
The input buffer can hold no more than 12290 characters, which means no more
than 1755 values sent from the TC1 at any given time. After the input buffer is
full the TC1 seismometer is unable to push any further values into the buffer at
which stage any excess values are dropped until space is created in the buffer.

The collecting process is quite efficient, as it doesn’t have too many instructions
to process, unlike the plotting process that currently handles both the plotting,
and managing the live plot display window. However as we’ve come to see, the
only method that is causing all the problem is the plot.draw() method in the
plotting component and not any others.

22

The pipe that connects the two processes can hold a maximum of 682 values at
once. So once the nature of this system was understood, it made it easier to
unravel how the whole application was effected due to the inefficient draw
method. The following bullet points try to convey this effect on the application in
a concise manner:

o Due to the increasing delay caused by the draw method that sat within the
plotting process, the whole process became slower and slower as the time
went on.

o Due to the plotting process taking more time, the rate at which it reads
values from the Pipe decreased causing values in the Pipe to accumulate.

o This in turn caused the pipe to become full and remain full for longer
periods of time until the slow plotting process read from the pipe to
create space for more values to be sent from the collecting process.

o I learnt that the pipe method calls are blocking method calls meaning if
you try to push a value on to a pipe that is full, the process would wait
there without executing any other code until there is space on the pipe to
push the value, and likewise if a process reads from an empty pipe it will
get stuck in that method call until it receives a value from the pipe. This
causes the processes to block further execution whenever these two
conditions take place.

Action Pipe Condition Result
Process tries to read . Process waits till it
) Pipe empty)
from pipe receives a value

Process wait till there

P tries t h
rocess tries 1o pus Pipe full is space on pipe to

| to pi
value onto pipe push value

o Due to this nature of a Pipe, when the collecting process fills up the pipe
faster than the plotting process reads them, the collecting process waits
and blocks till it can push more values on to the pipe.

o This wait that the collecting process does, causes the serial port input
buffer to fill up as more and more values are being placed in it while they
are not being read fast enough by the collecting process causing a
bottleneck situation in the application.

o Thus the delay starts of small but gets worse and worse and the rate at
which the plotting component reads the pipe decreases.

23

Thus after understanding the whole situation, I looked into a way of replacing
Matplotlib’s draw method with something that was more efficient. Upon doing a
bit of research I came across a rendering technique generally used in gaming
known as Blitting. To "blit" is to copy bits from one part of a computer's
graphical memory to another part. This technique deals directly with the pixels
of an image, and draws them directly to the screen, which makes it a very fast
rendering technique that's often used in fast-paced 2D action games (gaming).
Therefore I tried and successfully implemented the use of Blitting in PyjAmaseis
where after plotting an array of values I blit the figure and draw the new values
on top of the currently blitted figure and repeat the process. Thus the plot is only
drawing the values sent to it and the old values do not exist in any array, but they
do as a blitted image of the figure. To my astonishment, with the help of blitting
the rate at which the figure draws the new values and blits the figure together
come to about 0.032 seconds which is roughly 12.2 times faster than what the
plotting process took earlier to achieve the same result. This value was again
calculated using the timestamp method explained earlier. Thus I successfully
completed the plotting component of the application. The sub-second precision
with which the application now plots has seismological significance and will be
further explained in the results section. Upon receiving a request from Dr.
Kasper, I reverted back to a multi-threaded architecture using queues, as
opposed to a multi-processing architecture using pipes. I did not notice any
delays or lags in the multi-threaded architecture after the use of blitting.

4.3 Saving

The saving component of PyjAmaseis is responsible for saving hour-long mseed
files. MSEED is a seismology file format where SEED stands for Standard for
Exchanging Earthquake Data and MSEED stands for mini SEED. The process for
saving mseed files is quite simple with the help of ObsPy, which is one of the
main reasons for choosing to develop this application in Python. The write
module in the ObsPy framework allows us to export the data collected into
seismology file formats very easily and efficiently. The process of saving these
files is to create a trace object that contains all the data collected from the TC1
seismometer and then writing this trace along with header information into an
mseed file.

In the process of creating header information, I came to notice the headers that
are required to store the station location, station ID and station geo coordinates,
were missing in the list of available headers in the MSEED file format. Upon
raising this issue with Dr. Kasper, he recommended me to save the files into a
SAC format. SAC stands for Seismic Analysis Code and is equivalent to SEED.
With the required headers available in SAC I saved the header information and
the hour-long seismic data into trace object and placed that within a Stream
object before writing the stream into a SAC file. A trace contains hour-long
seismic data while a stream object can contain several trace objects. Figure 21

24

presents the code that saves the header information and array of seismic data

into a trace, which is then placed in a Stream object before being written into a
SAC file.

st = Stream([Trace(data=hourSeismicData, header=stats)])
st.write(sacyear+sacmonth+sacday+sachour+sacminute+stats['station']+".sac", format='SAC')

Figure 21 Creating a trace object, placing it in a Stream and saving the stream as a .SAC file

This component of PyjAmaseis is also responsible for saving Screenshots of the
plot at regular intervals. According to the initial specification, the SAC and
Screenshots needed to be saved at least once every hour. There were several
options available for capturing the window screenshot in Python. I chose to use
the PIL module that contained the Image grab class that could take and save
screenshots in PNG file format. PIL stands for Python Imaging Library. These
files were saved in the same directory the script was running from. The following
line of code carries out the screen capture.

ImageGrab.grab().save(now2[@]+'~"+str(now3)+".png", "PNG")

Figure 22 Line of code takes screen shot of the plotting window

4.4 Sharing

This component of the PyjAmaseis application focuses on providing the
capability of uploading the SAC and screenshots saved by the application to the
NZSeis central server. The aim behind this functionality is to create a network of
schools that can share the seismic data that is collected at their school with other
schools around the country.

[worked alongside Matiu (Mat) Carr from the SciencelT department at
University of Auckland in order to successfully achieve the implementation of
this component.

Mat recommended I look into using PycURL to create HTTPS requests to upload
the data to a server hosted by the SciencelT called NZSeis. PycURL is a Python
interface to Libcurl. Libcurl is a client-side URL transfer library supporting a
large number of protocols such as HTTP, HTTPS, IMAP and SMTPS. Libcurl also
supports SSL certificates, HTTP form based uploading, username and password
authentication along with many other things.

It took me some time, but writing the code to upload the saved sac file or image

was relatively easy with PycURL. The code snippet in figure 23 demonstrates this
process.

25

##Upload

contentType = "application/octet-stream"

¢ = pycurl.Curl()

c.setopt(c.URL, 'https://nzseis.phy.auckland.ac.nz/pyjamaseis/upload/"')

c.setopt(c.HTTPHEADER, ['Authorization:'+'Basic %s' % base64.b64encode("kofi:pyjamaseis")])
c.setopt(c.HTTPPOST, [(“payload",(c.FORM_FILE, fileNaame, c.FORM_CONTENTTYPE, contentType)), ("mode","sac")])

Figure 23 This code creates a multipart form encoded HTTP Post request to upload a SAC file

In order to upload a SAC file I generated a HTTP Post request with PycURL and
supplied the required URL location of the NZSeis server, authentication header
information, and the SAC file itself. Here in the last line I created a multipart form
encoding in order to pass the sac file to the right component of the php script
running on the server side. The content type for a sac file is “application/octet-
stream” where as for the screenshots; the content type needs to be changed to
“image/png”. The “mode” in the multipart form encoding also needs to be change
to “image” instead of “sac” when uploading image files. SciencelT supplies the
credentials required in the authorization header to each individual school. These
are custom generated to prevent any random user posting data to that address.
In this example, “kofi” stands for “Kasper’s Office”.

The Apache Server has been configured to authenticate the request sent to that
location prior to the handling of the payload. Mat has written a php script on the
server side that checks the content type and payload to confirm that it is a SAC
file or an image file. Upon confirmation, the php script archives this file in a file
structure that is kept for back up and saves another copy on a public domain that
can be seen on the internet by other schools. Currently there are a lot more
security concerns that need to be addressed before we can make the data
publicly available on the internet, but the aim is to allow these files to be seen on
the ru.auckland.ac.nz website which is the Seismometer in Schools Programme
website running in New Zealand headed by Dr. Kasper.

4.5 Additional Features

Along with completing the core functionality I looked into implementing
additional functionality that supports the aim of PyjAmaseis and the end user.

4.5.1 TC1 Plug & Play

The first of these is the Plug & Play feature. For those who have used software
such as jAmaseis or Amaseis, they are aware of the difficulty in having to look up
the exact port name the TC1 seismometer is connected to in device manager and
select it from a list of COM ports before they can begin engaging with the
software. With teachers and students in mind, I knew that this would be a
difficult task for them, and so I looked into a way of removing this requirement of
knowing or searching for the COM port. Therefore an end user can directly
connect the TC1 to any port and run PyjAmaseis without having to know or do
any prior configuration to begin the plotting session. This feature works on all
platforms.

26

Device Information

Device Type: AS-1 - Device Port: }COM3 - |
Station Information
Station ID: Latitude: |0
Station Name: Longitude: |0
Station Location: Elevation: 0
Data Streaming

|| Share data on the jAmaseis network ~ Password:

Screenshots
[] Automatically Send Screenshots to FTP Server Debug mode (1 minute interval)

(o Cemer]

Figure 24 jAmaseis window showing the requirement of
Device port selection

The way I carried this out was to inspect the properties of the port the TC1
seismometer is connected to, and with the help of PySerial, I had placed several
checks in place that check for pre-determined port properties such as baudrate,
parity, timeout, and xonxoff and then select that port as the port that the TC1
seismometer was connected to. Before this check takes place though, there are
OS calls that are made which return the list of all active ports then the above-
mentioned check takes place before finalizing the port. This functionality has
been tested and has proven to successfully work on all operating systems and
even when other USB devices are connected.

#i#H## Method Returns all active usb ports
def serial_ports():
"""lLists serial ports

:raises EnvironmentError:
On unsupported or unknown platforms
:returns:
A list of available serial ports
if sys.platform.startswith('win'):
ports = ['COM' + str(i + 1) for i in range(256)]

elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):
this is to exclude your current terminal "/dev/tty"
ports = glob.glob("'/dev/tty[A-Za-z]x")

elif sys.platform.startswith('darwin'):
ports = glob.glob('/dev/tty.*")

else:
raise EnvironmentError('Unsupported platform')

result = []
for port in ports:
try:
s = serial.Serial(port)
s.close()
result.append(port)
except (0SError, serial.SerialException):
pass
return result

Figure 25 The serial_ports() responsible for returning all the currently active USB ports

27

def getSerialPort():
try:

activePorts = serial_ports()
for port in activePorts:
serialPort = serial.Serial(port)
if (serialPort.baudrate == 9600):
if (serialPort.parity == 'N'):
if (serialPort.timeout == None):
if (serialPort.xonxoff == False):
serialPort.close()
return porg
except:
print("Device not found")

Figure 26 This method checks each active USB port to see if it’s the TC1 connected to it

4.5.2 User Interface

In order to collect the station information I needed to create a Ul that allows the
user to enter their station name and address. [carried this out by creating an
interface using wxPython, which is a wrapper for the cross-platform GUI
wxWidgets (which is written in C++) for the Python programming language. Due
to the short amount of time I had left near the end of the project, I looked for a
quicker way to develop this interface. My search led me to WxGlade, which is a
WYSIWYG (What you see is what you get) GUI designer that helps create
wxWidgets/wxPython user interfaces. The use of WxGlade was a valuable
decision as it allowed me to quickly develop the interface I needed without
having to write any wxPython code. The information entered in the text fields is
saved locally in a txt file and is accessed every time the application is launched to
retrieve the saved information. This retrieved information will be used when
creating header information for the SAC files.

28

o PyjAmaseis v1.0 =
Station Information

PyjAmaseis ==

Station Name:

Street Address:

Geographic Coordinates
Longitude:
Latitude:

Elevation:

Begin

Figure 27 PyjAmaseis initial Ul window

4.5.3 Real-time Geo-location Querying

A suggestion that came through in my mid semester presentation from my BTech
IT coordinator Dr. Manoharan, was the possibility of looking into a way to auto
generate the longitude and latitude fields required for header information. This
requirement is understandable as many users especially teachers and students
would not know these values and would have to manually search the Internet to
know what the geo coordinates of their location are. To save them the trouble I
implemented a feature with the help of a module named Pygeocoder, which
allows any address written in the “Street Address” text field of the UI will
automatically make a call to get the exact geo-coordinates. This call is made after
each character is typed so by the end of it, the user will have the exact geo
coordinates for the street address they have entered. These retrieved
geocoordinates will populate their respective text fields providing real-time
feedback to the user.

results = Geocoder.geocode(self.streetAddress.GetValue())
longitude, latitude, elevation = results[@].coordinates
self.text_ctrl_6.SetValue(str{longitude))
self.text_ctrl_7.SetValue(str(latitude))
self.text_ctrl_8.SetValue(str(elevation))

Figure 28 GeoCoder returns the Longitude, Latitude and Elevation of the
Street address entered

4.5.4Y Plot Shift
The necessity for this functionality arose when one of the TC1 seismometers |
was using was not calibrated correctly and so its mode or resting value didn’t

29

match the default value of 32750 that I was using for plotting. It was slightly
higher so the whole plot was offset by an arbitrary value. Inorder to correct this,
[provided the user with a simple Graph Shift option in the secondary options
window that they can use to make incremental changes in shifting the plot on the
Y axis. [understood that if such caliberation was required then everytime the
aplication was loaded the user would have to manually configure this. Hence I
developed it such that everytime the caliberation is made this setting would be
saved locally in the text file and when the application is loaded the right
configured plot would be displayed.

& Options = O
24 Hour Plotting
1 Hour Plotting

Graph Shift

Figure 29 PyjAmaseis Options window

4.5.5 1 Hour Plot

The last functionality I implemented was the 1-hour plot as opposed to the
default 24-hour plot. This was an important functionality to implement because
in the 24-hour plot we can hardly see the nature of the seismic waves that were
being recorded by the TC1 seismometer. However with the 1-hour plot, which
plots 5-minute sections, we can clearly see the nature of this seismic activity. |
followed the same plotting procedure as I did for plotting a 24-hour plot except it
was developed for one hour. The user has the option to shift between the 24-
hour plot and 1-hour plot at will without any problems. The one-hour plot is a
very important feature because when a teacher is teaching seismology in a
classroom a 24 hour plot will not be a very good representative plot to show the
slight modulations created when walking or jumping near the TC1 seismometer.
However with a 1-hour plot this can be clearly seen and so it serves as a better
visual representation for demonstrating seismic activity.

30

o

2 PyAmaseis v1.0 -

6:40 2 Options = &

24 Hour Plotting

1 Hour Plotting

Graph Shift

1 2 3 4
Time(minutes)

Figure 30 PyjAmaseis 1 hour plot

5. Results

Through out the course of the development of PyjAmaseis, I encountered
numerous problems and challenges, which [have already covered in the
implementation section of this report. In this section [would like to emphasize
the outcome of the implementation and problems I addressed, and the
significance the solutions bring to the end users such as teachers, students and
seismologists.

The outcome of successfully addressing issues such as the distortion of the plot,
delay and lag issues in the plotting component and the use of a single subplot vs
24 individual subplots all contribute to creating a robust and accurate live
plotting component. Plotting is the most important functionality out of all
(collecting, plotting, saving and sharing) because when teaching students about
seismology they need to be able to engage with the seismometer and see the
immediate responses to their interactions. The plotting component needs to be
accurate and responsive to engage the students and provide them with another
interactive way of learning about seismology. Learning to use Blitting was a
crucial turning point in the development of the application as having to look into
another plotting library would have cost me a lot of time. This could have
hindered me from completing all the functionality that was laid out in the
beginning of the project. Therefore learning about Blitting turned out to be a
timely discovery, which I also happened to implement in a short amount of time.
The significance of being able to use the blitting technique in the plotting
component is a tremendous plus point because the Matplotlib draw() method
was very inefficient and also was not fit for being used in a live plotting situation.
The time difference is astounding when comparing the draw method vs using the

31

blitting technique in a live plotting scenario, with blitting being 12.2 times faster
than the draw method, executing in only 0.032 seconds every time.

This technique comes as a significant break through in the field of live plotting
applications for seismology because even the currently used applications such as
jAmaseis show signs of noticeable latency issues. Thus PyjAmaseis would serve
potentially as the first application that does live plotting to sub-second precision.
When discussing this with Dr. Kasper he explained how Seismologists
understand the internal structure of the earth and why sub-second precision is
so critical. Professional seismologists measure the time taken for an earthquake
to travel from one location to another. This time is measured using live plotting
mechanisms such as seismometers. While analog seismometers can accurately
indicate exactly when it experiences an earthquake, digital plotting has seen
latency issues thus affecting the accuracy of the measurement. The time taken
serves as an indicator as to what lies underneath the crust of the earth. Suppose
an earthquake takes a few seconds longer than it was expected, then the
seismologists would conclude there is some extra material in between that is
responsible for causing this delay. Thus by taking thousands of these sample
measurements over decades, seismologists attempt to understand the internal
structure of the earth. Hence sub-second plotting is so crucial as it affects the
way professional seismologists understand the earth’s internal structure.
Therefore I can proudly say that PyjAmaseis successfully addresses the latency
issues of previous seismology live plotting applications and can successfully be
used by professional seismologists around the world.

By implementing the additional features my aim was to remove some of the
known problems with seismology applications such as jAmaseis, and present
students with more engaging features allowing them to learn more about
seismology. Some of the cumbersome functionality in jAmaseis such as - knowing
which USB port the seismometer is connected to, and knowing the exact geo
location coordinates of their address - are simplified and automated in
PyjAmaseis so that teachers and students do not need to worry about these
things and can focus on what is most important which is engaging in the live
plotting, saving and sharing of seismic data. The 1-hour plot allows the user to
experience the high resolution with which the TC1 seismometer captures
seismic activity. Viewing the 1-hour plot is a more engaging experience as it
shows clearly any subtle seismic activity that cannot be seen in a 24-hour plot.

The current version of PyjAmaseis allows schools to incorporate it into their
curriculum and automatically have their SAC files and screenshots uploaded to
the NZSeis server. It is only a matter of time before the network is live and every
school gets access to every other school’s data to compare and learn from.

32

6. Evaluation

Although PyjAmaseis was not tested in a classroom environment, over the
course of development, all of the issues have been addressed and checks are in
place to ensure that the application is not only robust but also simple and user
friendly. This was part of the specification and has been successfully
implemented along with the core functionality to create a new - more engaging
software for educational seismology. PyjAmaseis meets all the requirements
stated at the beginning of the project.

My contribution to this project is not just the purposeful application that I have
built but the solutions to the challenges faced, bring to light some very useful
techniques that enhance the live plotting component of seismology applications.
[have also introduced several features that simplify and automate some of the
technical features present in the previous seismology software such as jAmaseis,
where users can now work with a simple user interface and can easily access the
different options available without any difficulty or complexity.

Over the course of the project there were a number of things that I had learnt.
Understanding how threads and processes worked in Python, inter-process
communication and a deeper understanding of Seismology. This project served
as a great opportunity for me to enhance my Python development skills along
with maintaining and managing a large project using the Git version control
system. | had the opportunity to build the TC1 seismometer and understand how
it worked. The project contained elements of desktop application development
along with adding remote functionality, which allowed me to refresh a lot of the
concepts I had learnt in the previous years of my BTech IT degree.

7. Conclusion

With the completion of PyjAmaseis I have not only managed to achieve all my
goals for this project but have managed to develop an application that carries
more functionality than what was initially laid out. PyjAmaseis not only contains
the core functionality such as live plotting, saving and uploading of data, but
more importantly simplifies the whole process to make it easier for students and
teachers to use. The additional functionality developed into PyjAmaseis enriches
the application with fixes from currently existing seismology applications along
with providing enhanced features such as a Graph Shift option for calibrating the
plot on the y axis and displaying of a 1 hour plot to get clearer visual display of
the seismic nature of the plot. PyjAmaseis as it is can now be deployed on
computers in schools that have been provided a TC1 seismometer and therefore
allow students to have a more informative and educative learning experience
when learning about seismology.

33

The component and connectors architecture of PyjAmaseis allows developers
around the world to easily implement and add their own features to the list of
features already existing in PyjAmaseis. They can also modify existing
components without affecting other components. Thus this makes PyjAmaseis
highly adaptable and accessible to keen developers who want to enhance the
capabilities of this application.

The sub-second plotting precision of the plotting component would definitely
make Professional Seismologists around the world interested in using
PyjAmaseis for real seismological calculations.

Thus PyjAmaseis is an all round application that can serve multiple purposes
depending on the environment of use. PyjAmaseis is a great application for
educational seismology and is equally as highly functional as other seismology
applications for professional seismologists to use in their day-to-day work.

8. Future Work

There is always a way to make something better and PyjAmaseis is no different.
There are several features I feel that must be developed into PyjAmaseis to make
it a more comprehensive solution. Several of these features are described below
along with potential ways of implementing them.

It would be a valuable feature to look into being able to stream data from one
station to another and plotting it there live. This way PyjAmaseis could plot the
live data from another station somewhere else in the country or even around the
world. In discussions with Mat, he told me that this feature could be easily
implemented using a free IRC (Internet Relay Chat) client that takes care of all
the communication requirements between all the clients (PyjAmaseis instances)
connected to it. [t works by creating a room consisting of all clients and a client
(A) can choose to subscribe to another client (B) in which case any data sent
from client B to the IRC is forwarded to client A. Clients can also subscribe to
multiple clients at once. There are several freely available IRC chat clients
available on the Internet such as mIRC and kiwiirc to name a few.

One of the very important features that should be implemented is to provide
visual cues such as popups and labels that will display when a pre-recorded
seismic behaviour is noticed. Labels are a feature provided by Matplotlib and can
be incorporated effectively to align with the overall learning goal of the
application.

34

Finally the ability to drag and save a desired section of the plot into a SAC file
should be incorporated into PyjAmaseis as this allows seismologists to quickly
select a part of the plot that represents an earthquake and study or share it with
others. This is a valuable feature as it gives the user the flexibility to save custom
sized SAC files instead of the default 1 hour long SAC files. Matplotlib keeps track
of the exact x and y coordinates of the cursor when it is within the plotting figure.
By using mouse events, such as clicked and released, along with the cursor’s
starting and ending coordinates, we can determine which plot and what range of
values the user is trying to select. Although the application does not hold the data
that is read from the Seismometer after it’s plotted, we can access the respective
SAC file and retrieve the portion that represents the users selection.

35

9. Bibliography

10.

11.

12.

13.

14.

15.

16.

Cochrane, L. (2009). Winquake Version 2.8 documentation. Retrieved on
August 4t 2014 from http://psn.quake.net/software /wq28doc.pdf.

Coleman, B., & Gerencher,]J. (2008) A software system for real-time
sharing of seismic data in educational environments.

Garlan, G., & Shaw, M. (1994). An Introduction into Software Architecture.
Carnegie Mellon University Pittsburgh, PA.

Gerencher, J., & Jackson, R. (1991). Classroom utilization of a multi-axis
lehman seismograph system. Journal of Geological Education.

Gerencher, J., & Sands, M. (2004). Online near-real-time seismic system
for the classroom. Journal of Geological Education.

IRIS. (2014). Iris - education and outreach. Retrieved August 34 2014
from http://www.iris.edu/hq/programs/education_and_outreach.

IRIS. (2014). Iris - incorporated research institutions for seismology.
Retrieved August 3r4 2014 from http://www.iris.edu/hq/.

jAmaseis. (2009) Seismology Software Meeting the Needs of Educators.
Retrieved October 18t 2014 from
http://www.iris.edu/gallery3 /research/2010proposal/E_and_O/system.

Matplotlib - Python Plotting Library. Retrieved October 25t 2014 from
http://matplotlib.org/.

ObsPy. (2012). A Python Framework for Seismology. Retrieved October
25t 2014 from https://github.com/obspy/obspy/wiki.

Paradigm. (2014). Paradigm Advanced Science for everyone. Retrieved on
August 5t 2014 from
http://www.pdgm.com/solutions/seismic-processing-and-imaging/.
PyDev. (2011). PyDev - Python IDE. Retrieved August 24t 2014 from
http://pydev.org/.

Ramirez, J. (2012). Learning from Manifold - Valued Data: An Application
to Seismic Signal Processing. University of Colorado.

RU. (2014). New Zealand Seismographs for Schools. Retrieved October
15t 2014 from http://ru.auckland.ac.nz/.

TUTS+. (2010). Game Development Glossary - Blitting. Retrieved October
227 2014 from
http://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-
is-blitting--gamedev-2247.

WesternGeco. (2012). The Omega Seismic Processing System - Seismic
analysis at your fingertips. Retrieved October 25t 2014.

36

